Families and genera assigned to Tremellomycetes have been mainly circumscribed by morphology and for the yeasts also by biochemical and physiological characteristics. This phenotype-based classification is largely in conflict with molecular phylogenetic analyses. Here a phylogenetic classification framework for the Tremellomycetes is proposed based on the results of phylogenetic analyses from a seven-genes dataset covering the majority of tremellomycetous yeasts and closely related filamentous taxa. Circumscriptions of the taxonomic units at the order, family and genus levels recognised were quantitatively assessed using the phylogenetic rank boundary optimisation (PRBO) and modified general mixed Yule coalescent (GMYC) tests. In addition, a comprehensive phylogenetic analysis on an expanded LSU rRNA (D1/D2 domains) gene sequence dataset covering as many as available teleomorphic and filamentous taxa within Tremellomycetes was performed to investigate the relationships between yeasts and filamentous taxa and to examine the stability of undersampled clades. Based on the results inferred from molecular data and morphological and physiochemical features, we propose an updated classification for the Tremellomycetes. We accept five orders, 17 families and 54 genera, including seven new families and 18 new genera. In addition, seven families and 17 genera are emended and one new species name and 185 new combinations are proposed. We propose to use the term pro tempore or pro tem. in abbreviation to indicate the species names that are temporarily maintained.
Parmelioid lichens are a diverse and ubiquitous group of foliose lichens. Generic delimitation in parmelioid lichens has been in a state of flux since the late 1960s with the segregation of the large, heterogeneous genus Parmelia into numerous smaller genera. Recent molecular phylogenetic studies have demonstrated that some of these new genera were monophyletic, some were not, and others, previously believed to be unrelated, fell within single monophyletic groups, indicating the need for a revision of the generic delimitations. This study aims to give an overview of current knowledge of the major clades of all parmelioid lichens. For this, we assembled a dataset of 762 specimens, including 31 of 33 currently accepted parmelioid genera (and 63 of 84 accepted genera of Parmeliaceae). We performed maximum likelihood and Bayesian analyses of combined datasets including two, three and four loci. Based on these phylogenies and the correlation of morphological and chemical characters that characterize monophyletic groups, we accept 27 genera within nine main clades. We re‐circumscribe several genera and reduce Parmelaria to synonymy with Parmotrema. Emodomelanelia Divakar & A. Crespo is described as a new genus (type: E. masonii). Nipponoparmelia (Kurok.) K.H. Moon, Y. Ohmura & Kashiw. ex A. Crespo & al. is elevated to generic rank and 15 new combinations are proposed (in the genera Flavoparmelia, Parmotrema, Myelochroa, Melanelixia and Nipponoparmelia). A short discussion of the accepted genera is provided and remaining challenges and areas requiring additional taxon sampling are identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.