We present a DNA barcoding study on the insect order Orthoptera that was generated in collaboration between four barcoding projects in three countries, viz. Barcoding Fauna Bavarica (Germany), German Barcode of Life, Austrian Barcode of Life and Swiss Barcode of Life. Our data set includes 748 COI sequences from 127 of the 162 taxa (78.4%) recorded in the three countries involved. Ninety-three of these 122 species (76.2%, including all Ensifera) can be reliably identified using DNA barcodes. The remaining 26 caeliferan species (families Acrididae and Tetrigidae) form ten clusters that share barcodes among up to five species, in three cases even across different genera, and in six cases even sharing individual barcodes. We discuss incomplete lineage sorting and hybridization as most likely causes of this phenomenon, as the species concerned are phylogenetically young and hybridization has been previously observed. We also highlight the problem of nuclear mitochondrial pseudogenes (numts), a known problem in the barcoding of orthopteran species, and the possibility of Wolbachia infections. Finally, we discuss the possible taxonomic implications of our barcoding results and point out future research directions.
BackgroundThe Indo-Pacific region has the largest number of seagrass species worldwide and this region is considered as the origin of the Hydrocharitaceae. Halophila ovalis and its closely-related species belonging to the Hydrocharitaceae are well-known as a complex taxonomic challenge mainly due to their high morphological plasticity. The relationship of genetic differentiation and geographic barriers of H. ovalis radiation was not much studied in this region. Are there misidentifications between H. ovalis and its closely related species? Does any taxonomic uncertainty among different populations of H. ovalis persist? Is there any genetic differentiation among populations in the Western Pacific and the Eastern Indian Ocean, which are separated by the Thai-Malay peninsula? Genetic markers can be used to characterize and identify individuals or species and will be used to answer these questions.ResultsPhylogenetic analyses of the nuclear ribosomal internal transcribed spacer region based on materials collected from 17 populations in the Western Pacific and the Eastern Indian Ocean showed that some specimens identified as H. ovalis belonged to the H. major clade, also supported by morphological data. Evolutionary divergence between the two clades is between 0.033 and 0.038, much higher than the evolutionary divergence among H. ovalis populations. Eight haplotypes were found; none of the haplotypes from the Western Pacific is found in India and vice versa. Analysis of genetic diversity based on microsatellite analysis revealed that the genetic diversity in the Western Pacific is higher than in the Eastern Indian Ocean. The unrooted neighbor-joining tree among 14 populations from the Western Pacific and the Eastern Indian Ocean showed six groups. The Mantel test results revealed a significant correlation between genetic and geographic distances among populations. Results from band-based and allele frequency-based approaches from Amplified Fragment Length Polymorphism showed that all samples collected from both sides of the Thai-Malay peninsula were clustered into two clades: Gulf of Thailand and Andaman Sea.ConclusionsOur study documented the new records of H. major for Malaysia and Myanmar. The study also revealed that the Thai-Malay peninsula is a geographic barrier between H. ovalis populations in the Western Pacific and the Eastern Indian Ocean.
Wolbachia, intracellular endosymbionts, are estimated to infect about half of all arthropod species. These bacteria manipulate their hosts in various ways for their maximum benefits. The rising global temperature may accelerate species migration, and thus, horizontal transfer of Wolbachia may occur across species previously not in contact. We transinfected and then cured the alpine fly Drosophila nigrosparsa with Wolbachia strain wMel to study its effects on this species. We found low Wolbachia titer, possibly cytoplasmic incompatibility, and an increase in locomotion of both infected larvae and adults compared with cured ones. However, no change in fecundity, no impact on heat and cold tolerance, and no change in wing morphology were observed. Although Wolbachia increased locomotor activities in this species, we conclude that D. nigrosparsa may not benefit from the infection. Still, D. nigrosparsa can serve as a host for Wolbachia because vertical transmission is possible but may not be as high as in the native host of wMel, Drosophila melanogaster.
Wolbachia (Alphaproteobacteria) are the most widespread endosymbionts of arthropods, manipulating their hosts by various means to maximize the number of host individuals infected. Based on quantitative analyzes of the published literature from Web of Science® and of DNA sequences of arthropod-hosted Wolbachia from GenBank, we made plausible that less than 1% of the expected 100 000 strains of Wolbachia in arthropods is known. Our findings suggest that more and globally better coordinated efforts in screening arthropods are needed to explore the true Wolbachia diversity and to help us understand the ecology and evolution of these host-endosymbiont interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.