This article documents the addition of 153 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Brassica oleracea, Brycon amazonicus, Dimorphandra wilsonii, Eupallasella percnurus, Helleborus foetidus, Ipomoea purpurea, Phrynops geoffroanus, Prochilodus argenteus, Pyura sp., Sylvia atricapilla, Teratosphaeria suttonii, Trialeurodes vaporariorum and Trypanosoma brucei. These loci were cross‐tested on the following species: Dimorphandra coccicinea, Dimorphandra cuprea, Dimorphandra gardneriana, Dimorphandra jorgei, Dimorphandra macrostachya, Dimorphandra mollis, Dimorphandra parviflora and Dimorphandra pennigera.
Many population studies on invasive plant pathogens are undertaken without knowing the center of origin of the pathogen. Most leaf pathogens of Eucalyptus originate in Australia and consequently with indigenous populations available, and it is possible to study the pathways of invasion. Teratosphaeria suttonii is a commonly occurring leaf pathogen of Eucalyptus species, naturally distributed in tropical and subtropical regions of eastern Australia where it is regarded as a minor pathogen infecting older leaves; however, repeated infections, especially in exotic plantations, can result in severe defoliation and tree deaths. Nine polymorphic microsatellite markers were used to assess the genetic structure of 11 populations of T. suttonii of which four where from within its native range in eastern Australia and the remaining seven from exotic Eucalyptus plantations. Indigenous populations exhibited high allele and haplotype diversity, predominantly clonal reproduction, high population differentiation, and low gene flow. The diversity of the invasive populations varied widely, but in general, the younger the plantation industry in a country or region, the lower the diversity of T. suttonii. Historical gene flow was from Australia, and while self‐recruitment was dominant in all populations, there was evidence for contemporary gene flow, with South Africa being the most common source and Uruguay the most common sink population. This points distinctly to human activities underlying long‐distance spread of this pathogen, and it highlights lessons to be learned regarding quarantine.
Teratosphaeria suttonii (= Kirramyces epicoccoides) is a leaf pathogen that can cause premature defoliation, reduced growth and vigosr and subsequent tree death of many Eucalyptus species.Although the fungus primarily infects mature leaves in the lower canopy, infections can spread to younger leaves during continued epidemics or when trees are stressed. Teratosphaeria suttonii has a wide distribution in Australia and has been introduced to many other parts of the world, most probably with germplasm used to establish plantations. The aim of this study was to establish the phylogenetic relationships between T. suttonii isolates from different countries and to consider whether cryptic species exist in a species complex. DNA from parts of the nuclear ribosomal internal transcribed spacer (ITS), β-tubulin and elongation factor-1α genes was sequenced and analyzed for isolates from throughout the range of T. suttonii in Australia, and from six countries (China, Indonesia, South Africa, Uruguay, USA and Vietnam) where the pathogen is introduced.Morphometrics of conidia produced both in vivo and in vitro were also considered. Analysis of the sequence data resulted in incongruent genealogies. Furthermore, groups of isolates in the genealogies could not be linked to area of origin. Likewise differences in conidial morphology could not be linked to any of the phylogenetic groups. There was no evidence of distinct species 2 boundaries and isolates from Australia were closely related to those from other parts of the world.The results of this study support the treatment of T. suttonii as a morphologically and genetically diverse species in its natural range in Australia. The diversity is reflected in introduced populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.