The failure to correctly identify single nucleotide polymorphisms (SNPs) significantly contributes to the misdiagnosis of infectious disease. Contrary to the strategy of creating shorter probes to improve SNP differentiation , we created larger probes that appeared to increase selectivity. Specifically , probes with enhanced melting temperature differentials (>13؋ improvement) to SNPs were generated by linking two probes that consist of both a capture sequence and a detection sequence; these probes act cooperatively to improve selectivity over a wider range of reaction conditions. These cooperative probe constructs (Tentacle probes) were then compared by modeling thermodynamic and hybridization characteristics to both Molecular Beacons (stem loop DNA probes) and Taqman probes (a linear oligonucleotide). The biophysical models reveal that cooperative probes compared with either Molecular beacons or Taqman probes have enhanced specificity. This was a result of increased melting temperature differentials and the concentration-independent hybridization revealed between wild-type and variant sequences. We believe these findings of order of magnitude enhanced melting temperature differentials with probes possessing concentration independence and more favorable binding kinetics have the potential to significantly improve molecular diagnostic assay functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.