Abstract-Nonverbal communication plays an important role in coordinating teammates' actions for collaborative activities. In this paper, we explore the impact of non-verbal social cues and behavior on task performance by a human-robot team. We report our results from an experiment where naïve human subjects guide a robot to perform a physical task using speech and gesture. The robot communicates either implicitly through behavior or explicitly through non-verbal social cues. Both selfreport via questionnaire and behavioral analysis of video offer evidence to support our hypothesis that implicit non-verbal communication positively impacts human-robot task performance with respect to understandability of the robot, efficiency of task performance, and robustness to errors that arise from miscommunication. Whereas it is already well accepted that social cues enhance the likeability of robots and animated agents, our results offer promising evidence that they can also serve a pragmatic role in improving the effectiveness human-robot teamwork where the robot serves as a cooperative partner.
The ability to learn is a potentially compelling and important quality for interactive synthetic characters. To that end, we describe a practical approach to real-time learning for synthetic characters. Our implementation is grounded in the techniques of reinforcement learning and informed by insights from animal training. It simpliÞes the learning task for characters by (a) enabling them to take advantage of predictable regularities in their world, (b) allowing them to make maximal use of any supervisory signals, and (c) making them easy to train by humans.We built an autonomous animated dog that can be trained with a technique used to train real dogs called "clicker training". Capabilities demonstrated include being trained to recognize and use acoustic patterns as cues for actions, as well as to synthesize new actions from novel paths through its motion space.A key contribution of this paper is to demonstrate that by addressing the three problems of state, action, and state-action space discovery at the same time, the solution for each becomes easier. Finally, we articulate heuristics and design principles that make learning practical for synthetic characters.
Future applications for personal robots motivate research into developing robots that are intelligent in their interactions with people. Toward this goal, in this paper we present an integrated socio-cognitive architecture to endow an anthropomorphic robot with the ability to infer mental states such as beliefs, intents, and desires from the observable behavior of its human partner. The design of our architecture is informed by recent findings from neuroscience and embodies cognition that reveals how living systems leverage their physical and cognitive embodiment through simulation-theoretic mechanisms to infer the mental states of others. We assess the robot's mindreading skills on a suite of benchmark tasks where the robot interacts with a human partner in a cooperative scenario and a learning scenario. In addition, we have conducted human subjects experiments using the same task scenarios to assess human performance on these tasks and to compare the robot's performance with that of people. In the process, our human subject studies also reveal some interesting insights into human behavior.
The ability to learn is a potentially compelling and important quality for interactive synthetic characters. To that end, we describe a practical approach to real-time learning for synthetic characters. Our implementation is grounded in the techniques of reinforcement learning and informed by insights from animal training. It simpliÞes the learning task for characters by (a) enabling them to take advantage of predictable regularities in their world, (b) allowing them to make maximal use of any supervisory signals, and (c) making them easy to train by humans.We built an autonomous animated dog that can be trained with a technique used to train real dogs called "clicker training". Capabilities demonstrated include being trained to recognize and use acoustic patterns as cues for actions, as well as to synthesize new actions from novel paths through its motion space.A key contribution of this paper is to demonstrate that by addressing the three problems of state, action, and state-action space discovery at the same time, the solution for each becomes easier. Finally, we articulate heuristics and design principles that make learning practical for synthetic characters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.