Most of the published quantitative models in biology are lost for the community because they are either not made available or they are insufficiently characterized to allow them to be reused. The lack of a standard description format, lack of stringent reviewing and authors' carelessness are the main causes for incomplete model descriptions. With today's increased interest in detailed biochemical models, it is necessary to define a minimum quality standard for the encoding of those models. We propose a set of rules for curating quantitative models of biological systems. These rules define procedures for encoding and annotating models represented in machine-readable form. We believe their application will enable users to (i) have confidence that curated models are an accurate reflection of their associated reference descriptions, (ii) search collections of curated models with precision, (iii) quickly identify the biological phenomena that a given curated model or model constituent represents and (iv) facilitate model reuse and composition into large subcellular models.During the genomic era we have witnessed a vast increase in availability of large amounts of quantitative data. This is motivating a shift in the focus of molecular and cellular research from qualitative descriptions of biochemical interactions towards the quantification of such interactions and their dynamics. One of the tenets of systems biology is the use of quantitative models (see Box 1 for definitions) as a mechanism for capturing precise hypotheses and making predictions 1,2 . Many specialized models exist that attempt to explain aspects of the cellular machinery. However, as has happened with other types of biological information, such as sequences, macromolecular structures or Box 1 GlossarySome terms are used in a very specific way throughout the article. We provide here a precise definition of each one.Quantitative biochemical model. A formal model of a biological system, based on the mathematical description of its molecular and cellular components, and the interactions between those components.Encoded model. A mathematical model written in a formal machine-readable language, such that it can be systematically parsed and employed by simulation and analysis software without further human translation. MIRIAM-compliant model. A model that passes all the tests and fulfills all the conditions listed in MIRIAM.Reference description. A unique document that describes, or references the description of the model, the structure of the model, the numerical values necessary to instantiate a simulation from the model, or to perform a mathematical analysis of the model, and the results one expects from such a simulation or analysis.Curation process. The process by which the compliance of an encoded model with MIRIAM is achieved and/or verified. The curation process may encompass some or all of the following tasks: encoding of the model, verification of the reference correspondence and annotation of the model.Reference correspondence. The fact that the...
Advances in biotechnology and experimental techniques have lead to the elucidation of vast amounts of biological data. Mathematical models provide a method of analysing this data; however, there are two issues that need to be addressed: (1) the need for standards for defining cell models so they can, for example, be exchanged across the World Wide Web, and also read into simulation software in a consistent format and (2) eliminating the errors which arise with the current method of model publication. CellML has evolved to meet these needs of the modelling community. CellML is a free, open-source, eXtensible markup language based standard for defining mathematical models of cellular function. In this paper we summarise the structure of CellML, its current applications (including biological pathway and electrophysiological models), and its future development--in particular, the development of toolsets and the integration of ontologies.
The development of standards for encoding mathematical models is an important component of model building and model sharing among scientists interested in understanding multi-scale physiological processes. CellML provides such a standard, particularly for models based on biophysical mechanisms, and a substantial number of models are now available in the CellML Model Repository. However, there is an urgent need to extend the current CellML metadata standard to provide biological and biophysical annotation of the models in order to facilitate model sharing, automated model reduction and connection to biological databases. This paper gives a broad overview of a number of new developments on CellML metadata and provides links to further methodological details available from the CellML website.
BackgroundCellML is an XML based language for representing mathematical models, in a machine-independent form which is suitable for their exchange between different authors, and for archival in a model repository. Allowing for the exchange and archival of models in a computer readable form is a key strategic goal in bioinformatics, because of the associated improvements in scientific record accuracy, the faster iterative process of scientific development, and the ability to combine models into large integrative models.However, for CellML models to be useful, tools which can process them correctly are needed. Due to some of the more complex features present in CellML models, such as imports, developing code ab initio to correctly process models can be an onerous task. For this reason, there is a clear and pressing need for an application programming interface (API), and a good implementation of that API, upon which tools can base their support for CellML.ResultsWe developed an API which allows the information in CellML models to be retrieved and/or modified. We also developed a series of optional extension APIs, for tasks such as simplifying the handling of connections between variables, dealing with physical units, validating models, and translating models into different procedural languages.We have also provided a Free/Open Source implementation of this application programming interface, optimised to achieve good performance.ConclusionsTools have been developed using the API which are mature enough for widespread use. The API has the potential to accelerate the development of additional tools capable of processing CellML, and ultimately lead to an increased level of sharing of mathematical model descriptions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.