Anthropogenic modifications of sediment load can cause ecological degradation in stream and river ecosystems. However, in practice, identifying when and where sediment is the primary cause of ecological degradation is a challenging task. Biological communities undergo natural cycles and variation over time, and respond to a range of physical, chemical and biological pressures. Furthermore, fine sediments are commonly associated with numerous other pressures that are likely to influence aquatic biota. The use of conventional, non-biological monitoring to attribute cause and effect would necessitate measurement of multiple parameters, at sufficient temporal resolution, and for a significant period of time. Biomonitoring tools, which use low-frequency measurements of biota to gauge and track changes in the environment, can provide a valuable alternative means to detecting the effects of a given pressure. In this study, we develop and test an improved macroinvertebrate, family-level and mixed-level biomonitoring tool for fine sediment. Biologically-based classifications of sediment sensitivity were supplemented by using empirical data of macroinvertebrate abundance and percentage fine sediment, collected across a wide range of temperate river and stream ecosystems (model training datasetn=2252) to assign detailed individual sensitivity weights to taxa. An optimum set of weights were identified by non-linear optimisation, as those that resulted in the highest Spearman’s rank correlation coefficient between the index (called the Empirically-weighted Proportion of Sediment-sensitive Invertebrates index; E-PSI) scores and deposited fine sediment in the model training dataset. The family and mixed-level tools performed similarly, with correlations with percentage fine sediment in the test dataset (n=84) ofrs=−0.72 andrs=−0.70p<0.01. Testing of the best performing family level version, over agriculturally impacted sites (n=754) showed similar correlations to fine sediment (rs=−0.68p<0.01). The tools developed in this study have retained their biological basis, are easily integrated into contemporary monitoring agency protocols and can be applied retrospectively to historic datasets. Given the challenges of non-biological conventional monitoring of fine sediments and determining the biological relevance of the resulting data, a sediment-specific biomonitoring approach is highly desirable and will be a useful addition to the suite of pressure-specific biomonitoring tools currently used to infer the causes of ecological degradation
SUMMARY1. Elevated levels of fine sediment (suspended and deposited) are a common cause of ecological degradation in freshwater ecosystems. However, it is time-consuming and expensive to monitor these parameters to support national and international water resource legislation. 2. The Proportion of Sediment-sensitive Invertebrates (PSI) index is a biomonitoring tool that is designed to identify the degree of sedimentation in rivers and streams. Despite having a sound biological basis, until now, the PSI index has only been tested against observed fine sediment data in two catchments; other published applications of the PSI index have relied on inferred fine sediment values. 3. In this study, we report the results of a comprehensive analysis of the performance of the PSI index across a wide range of reference condition temperate stream and river ecosystems, including 835 sites with data on deposited sediment and 451 sites with data on suspended solids (>12 500 data points measured between 1978 and 2002). 4. The effect of taxonomic level and taxonomic resolution on the performance of the PSI index was also examined, as was the performance of the PSI index against other non-sediment-specific indices, including Average Score Per Taxon (ASPT), Lotic-invertebrate Index for Flow Evaluation (LIFE), Ephemeroptera, Plecoptera and Trichoptera (EPT) abundance, % EPT abundance, EPT richness and % EPT richness. 5. The results of this study show that the PSI index was more correlated with fine sediment metrics than the other biological indices tested: r s = À0.64, (P < 0.01, n = 2502) for deposited sediment and r s = À0.50 (P < 0.01, n = 1353) for suspended solids. 6. We highlight the optimal conditions for applying the PSI index, in its current form. Given the variability in the relationship between PSI and fine sediment metrics, we propose that the use of data from more objective, quantitative methods of measuring deposited fine sediment may help to enhance the performance of the model for future applications and advance understanding of fine sediment dynamics and the pressure-response relationship.
The North American signal crayfish (Pacifastacus leniusculus) has invaded freshwater ecosystems across Europe. Recent studies suggest that predation of macroinvertebrates by signal crayfish can affect the performance of freshwater biomonitoring tools used to assess causes of ecological degradation. Given the reliance on biomonitoring globally, it is crucial that the potential influence of invasive species is better understood. Crayfish are also biogeomorphic agents, and therefore, the aim of this study was to investigate whether sediment-biomonitoring tool outputs changed following signal crayfish invasions, and whether these changes reflected post-invasion changes to deposited fine sediment, or changes to macroinvertebrate community compositions unrelated to fine sediment. A quasi-experimental study design was employed, utilising interrupted time series analysis of long-term environmental monitoring data and a hierarchical modelling approach. The analysis of all sites (n=71) displayed a small, but statistically significant increase between pre- and post-invasion index scores for the Proportion of Sediment-sensitive Invertebrates (PSI) index biomonitoring tool (4.1, p<0.001, 95%CI: 2.1, 6.2), which can range from 0 to 100, but no statistically significant difference was observed for the empirically-weighted PSI (0.4, p=0.742, 95%CI: -2.1, 2.9), or fine sediment (-2.3, p=0.227, 95%CI: -6.0, 1.4). Subgroup analyses demonstrated changes in biomonitoring tool scores ranging from four to 10 percentage points. Importantly, these subgroup analyses showed relatively small changes to fine sediment, two of which were statistically significant, but these did not coincide with the expected responses from biomonitoring tools. The results suggest that sediment-biomonitoring may be influenced by signal crayfish invasions, but the effects appear to be context dependent, and perhaps not the result of biogeomorphic activities of crayfish. The low magnitude changes to biomonitoring scores are unlikely to result in an incorrect diagnosis of sediment pressure, particularly as these tools should be used alongside a suite of other pressure-specific indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.