The SARS-CoV-2 (COVID-19) pandemic has provided a unique set of global supply chain limitations with an exponentially growing surge of patients requiring care. The needs for Personal Protective Equipment (PPE) for hospital staff and doctors have been overwhelming, even just to rule out patients not infected. High demand for traditionally manufactured devices, challenged by global demand and limited production, has resulted in a call for additive manufactured (3D printed) equipment to fill the gap between traditional manufacturing cycles. This method has the unique ability to pivot in real time, while traditional manufacturing may take months to change production runs. 3D printing has been used to produce a variety of equipment for hospitals including face shields, masks, and even ventilator components to handle the surge. This type of rapid, crowd sourced, design and production resulted in new challenges for regulation, liability, and distribution. This manuscript reviews these challenges and successes of additive manufacturing and provides a forward plan for hospitals to consider for future surge events. Recommendations: To accommodate future surges, hospitals and municipalities should develop capacity for short-run custom production, enabling them to validate new designs. This will rapidly increase access to vetted equipment and critical network sharing with community distributed manufacturers and partners. Clear guidance and reviewed design repositories by regulatory authorities will streamline efforts to combat future pandemic waives or other surge events.
There is an interesting and long history of prostheses designed for those with upper-limb difference, and yet issues still persist that have not yet been solved. Prosthesis needs for children are particularly complex, due in part to their growth rates. Access to a device can have a significant impact on a child’s psychosocial development. Often, devices supporting both cosmetic form and user function are not accessible to children due to high costs, insurance policies, medical availability, and their perceived durability and complexity of control. These challenges have encouraged a grassroots effort globally to offer a viable solution for the millions of people living with limb difference around the world. The innovative application of 3D printing for customizable and user-specific hardware has led to open-source Do It Yourself “DIY” production of assistive devices, having an incredible impact globally for families with little recourse. This paper examines new research and development of prostheses by the maker community and nonprofit organizations, as well as a novel case study exploring the development of technology and the training methods available. These design efforts are discussed further in the context of the medical regulatory framework in the United States and highlight new associated clinical studies designed to measure the quality of life impact of such devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.