Accumulating evidence suggests important roles for the receptor tyrosine kinase Axl in cancer progression, invasion, metastasis, drug resistance, and patient mortality, highlighting Axl as an attractive target for therapeutic development. We have generated and characterized a potent and selective small-molecule inhibitor, R428, that blocks the catalytic and procancerous activities of Axl. R428 inhibits Axl with low nanomolar activity and blocked Axl-dependent events, including Akt phosphorylation, breast cancer cell invasion, and proinflammatory cytokine production. Pharmacologic investigations revealed favorable exposure after oral administration such that R428-treated tumors displayed a dose-dependent reduction in expression of the cytokine granulocyte macrophage colony-stimulating factor and the epithelial-mesenchymal transition transcriptional regulator Snail. In support of an earlier study, R428 inhibited angiogenesis in corneal micropocket and tumor models. R428 administration reduced metastatic burden and extended survival in MDA-MB-231 intracardiac and 4T1 orthotopic (median survival, >80 days compared with 52 days; P < 0.05) mouse models of breast cancer metastasis. Additionally, R428 synergized with cisplatin to enhance suppression of liver micrometastasis. Our results show that Axl signaling regulates breast cancer metastasis at multiple levels in tumor cells and tumor stromal cells and that selective Axl blockade confers therapeutic value in prolonging survival of animals bearing metastatic tumors. Cancer Res; 70(4); 1544-54. ©2010 AACR.
Despite evident success in clarifying many important features of Alzheimer's disease (AD) the efficient methods of its prevention and treatment are not yet available. The reasons are likely to be the fact that AD is a multifactorial and heterogeneous health disorder with multiple alternative pathways of disease development and progression. The availability of genetic data on individuals participated in longitudinal studies of aging health and longevity, as well as on participants of cross-sectional case-control studies allow for investigating genetic and non-genetic connections with AD and to link the results of these analyses with research findings obtained in clinical, experimental, and molecular biological studies of this health disorder. The objective of this paper is to perform GWAS of AD in several study populations and investigate possible roles of detected genetic factors in developing AD hallmarks and in other health disorders. The data collected in the Framingham Heart Study (FHS), Cardiovascular Health Study (CHS), Health and Retirement Study (HRS) and Late Onset Alzheimer's Disease Family Study (LOADFS) were used in these analyses. The logistic regression and Cox's regression were used as statistical models in GWAS. The results of analyses confirmed strong associations of genetic variants from well-known genes APOE, TOMM40, PVRL2 (NECTIN2), and APOC1 with AD. Possible roles of these genes in pathological mechanisms resulting in development of hallmarks of AD are described. Many genes whose connection with AD was detected in other studies showed nominally significant associations with this health disorder in our study. The evidence on genetic connections between AD and vulnerability to infection, as well as between AD and other health disorders, such as cancer and type 2 diabetes, were investigated. The progress in uncovering hidden heterogeneity in AD would be substantially facilitated if common mechanisms involved in development of AD, its hallmarks, and AD related chronic conditions were investigated in their mutual connection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.