Cross-sectional age effects in normal control volunteers were investigated in 8 subcortical structures: lateral ventricles, thalamus, caudate, putamen, pallidum, hippocampus, amygdala and nucleus accumbens. Two hundred and twenty six control subjects, ranging in age from 19 to 85 years, were scanned on a 1.5T GE system (n = 184) or a 3.0T Siemens system (n = 42). Cranium-size adjusted subcortical structure volumes were estimated using FSL’s FIRST software, which is fully automated. Significant age effects were found for all volumes when the entire age range was analyzed, however the older subjects (60–85 years of age) showed a stronger correlation between age and structural volume for the ventricles, hippocampus, amygdala and accumbens than middle-aged (35–60 years of age) subjects. Middle-aged subjects were studied at both sites, and age effects in these groups were comparable, despite differences in magnet strength and acquisition systems. This agreement lends support to the validity of the image analysis tools and procedures used in the present study.
The effects of surface roughness on the aerodynamic performance of a turbine vane are investigated for three Mach number distributions, one of which results in transonic flow. Four turbine vanes, each with the same shape and exterior dimensions, are employed with different rough surfaces. The nonuniform, irregular, three-dimensional roughness on the tested vanes is employed to match the roughness which exists on operating turbine vanes subject to extended operating times with significant particulate deposition on the surfaces. Wake profiles are measured for two different positions downstream the vane trailing edge. The contributions of varying surface roughness to aerodynamic losses, Mach number profiles, normalized kinetic energy profiles, Integrated Aerodynamics Losses (IAL), area-averaged loss coefficients, and mass-averaged loss coefficients are quantified. Total pressure losses, Mach number deficits, and deficits of kinetic energy all increase at each profile location within the wake as the size of equivalent sandgrain roughness increases, provided the roughness on the surfaces is uniform. Corresponding Integrated Aerodynamic Loss IAL magnitudes increase either as Mach numbers along the airfoil are higher, or as the size of surface roughness increases. Data are also provided which illustrate the larger loss magnitudes which are present with flow turning and cambered airfoils, than with symmetric airfoils. Also described are wake broadening, profile asymmetry, and effects of increased turbulent diffusion, variable surface roughness, and streamwise development.
Limited available data suggest a substantial impact of Mach number on the heat transfer from an array of jets impinging on a surface at fixed Reynolds number. Many jet array heat transfer correlations currently in use are based on tests in which the jet Reynolds number was varied by varying the jet Mach number. Hence, this data may be inaccurate for high Mach numbers. Results from the present study are new and innovative because they separate the effects of jet Reynolds number and jet Mach number for the purposes of validating and improving correlations that are currently in use. The present study provides new data on the separate effects of Reynolds number and Mach number for an array of impinging jets in the form of discharge coefficients, local and spatially averaged Nusselt numbers, and local and spatially averaged recovery factors. The data are unique because data are given for impingement jet Mach numbers as high as 0.60 and impingement jet Reynolds numbers as high as 60,000, and because the effects of Reynolds number and Mach number are separated by providing data at constant Reynolds number because the Mach number is varied, and data at constant Mach number because the Reynolds number is varied. As such, the present data are given for experimental conditions not previously examined, which are outside the range of applicability of current correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.