Proteins
can be modified on lysines (K) with a single ubiquitin
(Ub) or with polymers of Ub (polyUb). These different configurations
and their respective topologies are primary factors for determining
whether substrates are targeted to the proteasome for degradation
or directed to nonproteolytic outcomes. We report here on the intrinsic
ubiquitylation properties
of UbcM2 (UBE2E3/UbcH9), a conserved Ub-conjugating enzyme linked
to cell proliferation, development, and the cellular antioxidant defense
system. Using a fully recombinant ubiquitylation assay,
we show that UbcM2 is severely limited in its ability to synthesize
polyUb chains with wild-type Ub. Restriction to monoubiquitylation
is governed by multiple residues on the backside of the enzyme, far
removed from its active site, and by lysine 48 of Ub. UbcM2 with mutated
backside residues can synthesize K63-linked polyUb chains and to a
lesser extent K6- and K48-linked chains. Additionally, we identified
a single residue on the backside of the enzyme that promotes monoubiquitylation.
Together, these findings reveal that a combination of noncatalytic
residues within the Ubc catalytic core domain of UbcM2 as well as
a lysine(s) within Ub can relegate a Ub-conjugating enzyme to monoubiquitylate
its cognate targets despite having the latent capacity to construct
polyUb chains. The two-fold mechanism for restricting activity to
monoubiquitylation provides
added insurance that UbcM2 will not build polyUb chains on its substrates,
even under conditions of high local Ub concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.