Polyolefins are finding increased popularity in microfluidic applications due to their attractive mechanical, processing, and optical properties. While intricate features are typically realized in these thermoplastics by hot embossing and injection molding, such fabrication approaches are expensive and slow. Here, we apply our shrink-induced approach-first demonstrated with polystyrene 'Shrinky-Dink' sheets-to create micro- and nanostructures with cross-linked polyolefin thin films. These multi-layered films shrink by 95% and with greater uniformity than the Shrinky-Dinks. With such significant reduction in size, along with attractive material properties, such commodity films could find important applications in low cost microfluidic prototyping as well as in point-of-care diagnostics. In this technical note, we demonstrate the ability to rapidly and easily create unique microstructures, increase microarray feature density, and even induce self-assembled integrated metallic nanostructures with these shrink wrap films.
The RADLAC-II accelerator foilless diode injector was operated under double-pulse conditions utilizing the RIIM accelerator as the test bed [M. G. Mazarakis, D. L. Smith, R. B. Miller, R. S. Clark, D. E. Hasti, D. L. Johnson, J. W. Poukey, K. R. Prestwich, and S. L. Shope, IEEE Trans. Nucl. Sci. NS-32, 3237 (1985)]. The original RIIM accelerator pulsed-power network was modified to provide for the generation, transmission, and delivery to the foilless diode of two distinct multimegavolt pulses with variable interpulse separation from 0 to 2 ms. The foilless diode successfully produced two 10-kA current pulses with interpulse separations up to 1 μs. For larger separations, the generated plasma and an excessive neutral gas release following the first pulse prevented the diode from producing a second current pulse.
An extinction technique is described for obtaining high-contrast images while effectively increasing sensitivity in photodichroic alkali halide crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.