Novel protocols were developed to accurately quantify reduced (GSH), oxidized (GSSG) and total (tGSH) glutathione in biological samples using molecular speciated isotope dilution mass spectrometry (SIDMS). For GSH and GSSG measurement, the sample was spiked with isotopically enriched analogues of the analytes ((310)GSH and (616)GSSG), along with N-ethylmaleimide (NEM), and treated with acetonitrile to solubilize the endogenous analytes via protein precipitation and equilibrate them with the spikes. The supernatant was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the analytes were quantified with simultaneous tracking and correction for auto-oxidation of GSH to GSSG. For tGSH assay, a (310)GSH-spiked sample was treated with dithiothreitol (DTT) to convert disulfide-bonded glutathione to GSH. After removing the protein, the supernatant was analyzed by LC-MS/MS and the analyte was quantified by single-spiking isotope dilution mass spectrometry (IDMS). The mathematical relationships in IDMS and SIDMS quantifications are based on isotopic ratios and do not involve calibration curves. The protocols were validated using spike recovery tests and by analyzing synthetic standard solutions. Red blood cell (RBC) and saliva samples obtained from healthy subjects, and whole blood samples collected and shipped from a remote location were analyzed. The concentrations of tGSH in the RBC and whole blood samples were 2 orders of magnitude higher than those found in saliva. The fractions of GSSG were 0.2-2.2% (RBC and blood) and 15-47% (saliva) of the free glutathione (GSH + 2xGSSG) in the corresponding samples. Up to 3% GSH was auto-oxidized to GSSG during sample workup; the highest oxidations (>1%) were in the saliva samples.
In order to determine the health impact of chromium in dietary supplements, the Cr(III) and Cr(VI) must be independently measured and verified with mass balance (sum of both species equaling independent measurements of total chromium), as both may be present in finished products. Because Cr(III) is stable in acidic conditions and Cr(VI) in alkaline conditions, interconversions between species may occur in complex matrices and during analytical extraction, increasing the difficulty of quantification. A study was conducted to determine Cr(VI) and Cr(III) in dietary supplements. EPA Method 3060A extraction protocol was performed to extract Cr(VI), and EPA Method 3052 was performed on the extracted residue to digest the remaining Cr(III). Speciated isotope dilution mass spectrometry (SIDMS), as described in the EPA Method 6800 (update V), was implemented with ion-exchange chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS). Method 6800 uniquely enables tracking and correcting for the bidirectional chromium interspecies conversions that occur during extraction and sample handling prior to instrumental analysis. Mass balance results indicated that the off-the-shelf dietary supplements analyzed during this study contained hexavalent chromium ranging from
A biomonitoring method was developed for the determination of inorganic-, methyl-, and ethylmercury (Hg(2+), CH3Hg(+), and C2H5Hg(+), respectively) in whole blood by triple-spiking speciated isotope dilution mass spectrometry (SIDMS) using headspace (HS) solid-phase microextraction (SPME) in combination with gas chromatographic (GC) separation and inductively coupled plasma mass spectrometric (ICP-MS) detection. After spiking the blood sample with isotopically enriched analogues of the analytes ((199)Hg(2+), CH3(200)Hg(+) and C2H5(201)Hg(+)), the endogenous Hg species were solubilized in 2.0 mol L(-1) HNO3 and equilibrated with the spikes using a microwave-enhanced protocol. The microwaved sample was treated with a 1% (w/v) aqueous solution of sodium tetrapropylborate (buffered to pH 5.2), and the propylated Hg species were sampled in the HS using a Carboxen/polydimethylsiloxane-coated SPME fiber. The extracted species were thermally desorbed from the fiber in the GC injection port and determined by GC-ICP-MS. The analytes were quantified, with simultaneous correction for their method-induced transformation, on the basis of the mathematical relationship in triple-spiking SIDMS. The method was validated using a bovine blood standard reference material (SRM 966, Level 2). Analysis of human blood samples demonstrated the accuracy and reproducibility of the method, which can detect the Hg species down to 30 pg g(-1) in blood. The validity of the analytical results found for the blood samples was demonstrated using mass balance by comparing the sum of the concentrations of the individual Hg species with the total Hg in the corresponding samples; the latter was determined by isotope dilution mass spectrometry (IDMS) after decomposing the blood using EPA Method 3052 with single-spiking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.