We characterize cutting arcs on fiber surfaces that produce new fiber surfaces, and the changes in monodromy resulting from such cuts. As a corollary, we characterize band surgeries between fibered links and introduce an operation called Generalized Hopf banding. We further characterize generalized crossing changes between fibered links, and the resulting changes in monodromy.
Let M be a closed 3-manifold with a given Heegaard splitting. We show that after a single stabilization, some core of the stabilized splitting has arbitrarily high distance with respect to the splitting surface. This generalizes a result of Minsky, Moriah, and Schleimer for knots in S3. We also show that in the complex of curves, handlebody sets are either coarsely distinct or identical. We define the coarse mapping class group of a Heegaard splitting, and show that if (S, V, W) is a Heegaard splitting of genus ≥2, then the coarse mapping class group of (S, V, W) is isomorphic to the mapping class group of (S, V, W).
If a graph is in bridge position in a 3-manifold so that the graph complement is irreducible and boundary irreducible, we generalize a result of Bachman and Schleimer to prove that the complexity of a surface properly embedded in the complement of the graph bounds the graph distance of the bridge surface. We use this result to construct, for any natural number n, a hyperbolic manifold containing a surface of topological index n.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.