The naturally occurring Verticillium nonalfalfae has been proposed as a biocontrol agent against the highly invasive Ailanthus altissima in the eastern United States. We tested 71 nontarget woody species for susceptibility to the potential biocontrol agent. In the field, only devil’s walkingstick (17% incidence) and striped maple (3%) acquired infections through natural spread from infected A. altissima (100%). Staghorn sumac (16% incidence) also exhibited wilt in close proximity to diseased Ailanthus, although V. nonalfalfae was never recovered. Stem inoculations, which are highly artificial in that they bypass root defenses and flood the xylem with millions of conidia, induced varying levels of wilt and mortality in 10 nontarget species from which V. nonalfalfae was reisolated, although recovery and crown rebuilding occurred following initial wilt in several species including sassafras and northern catalpa. Thirty-seven of the 71 inoculated species exhibited vascular discoloration, although 23 of these species exhibited no outward symptoms (wilt, dieback) for up to 6 years postinoculation. However, V. nonalfalfae was reisolated from three of the 23 species, indicating a tolerant host response. Our results suggest that V. nonalfalfae is generally host-adapted to A. altissima with 78 of 78 A. altissima seed sources from 26 states and Canada showing susceptibility, and offers support for adoption and dissemination of V. nonalfalfae to combat the highly invasive A. altissima.
Verticillium wilt, caused by Verticillium nonalfalfae, is currently killing tens of thousands of highly invasive Ailanthus altissima trees within the forests in Pennsylvania, Ohio, and Virginia and is being considered as a biological control agent of Ailanthus. However, little is known about the pathogenicity and virulence of V. nonalfalfae isolates from other hosts on Ailanthus, or the genetic diversity among V. nonalfalfae from confirmed Ailanthus wilt epicenters and from locations and hosts not associated with Ailanthus wilt. Here, we compared the pathogenicity and virulence of several V. nonalfalfae and V. alfalfae isolates, evaluated the efficacy of the virulent V. nonalfalfae isolate VnAa140 as a biocontrol agent of Ailanthus in Pennsylvania, and performed multilocus sequence typing of V. nonalfalfae and V. alfalfae. Inoculations of seven V. nonalfalfae and V. alfalfae isolates from six plant hosts on healthy Ailanthus seedlings revealed that V. nonalfalfae isolates from hosts other than Ailanthus were not pathogenic on Ailanthus. In the field, 100 canopy Ailanthus trees were inoculated across 12 stands with VnAa140 from 2006 to 2009. By 2011, natural spread of the fungus had resulted in the mortality of >14,000 additional canopy Ailanthus trees, 10,000 to 15,000 Ailanthus sprouts, and nearly complete eradication of Ailanthus from several smaller inoculated stands, with the exception of a few scattered vegetative sprouts that persisted in the understory for several years before succumbing. All V. nonalfalfae isolates associated with the lethal wilt of Ailanthus, along with 18 additional isolates from 10 hosts, shared the same multilocus sequence type (MLST), MLST 1, whereas three V. nonalfalfae isolates from kiwifruit shared a second sequence type, MLST 2. All V. alfalfae isolates included in the study shared the same MLST and included the first example of V. alfalfae infecting a non-lucerne host. Our results indicate that V. nonalfalfae is host adapted and highly efficacious against Ailanthus and, thus, is a strong candidate for use as a biocontrol agent.
Brachycybe (Wood) is a genus of fungivorous millipedes. To date, the fungal associates of these millipedes have never been characterized. In an attempt to resolve these relationships, culture-based approaches combined with DNA barcode sequencing were used. Sampling of 313 individuals collected from three of four B. lecontii clades and 20 sites across seven states uncovered at least 183 genera in 40 orders from four fungal phyla. At least seven putative new species were recovered in this study, despite the use of more classical culture-based approaches. Three of these fungi were phylogenetically resolved using ITS + LSU and include two new species, aff. Fonsecaea sp., Mortierella aff. ambigua, and a new genus related to Apophysomyces. Overall, the results of this study highlight the vast amount of undescribed fungal biodiversity associated with millipedes. Twelve fungal genera from nine orders showed high connectivity across the entire B. lecontii-associated fungal network, indicating a central role for these fungi in their association with these millipedes. These twelve include the two putative new species described above. The ecology of these and other fungal associates were also explored, using fungal cohort pairings and entomopathogenicity trials. Over 40% of all fungal pairings resulted in competitive interactions, a majority of which involved inhibition or overgrowth by fungi in the Hypocreales and Polyporales, respectively. The abundance of these competitive interactions in these two orders indicate differing ecological strategies. Hypocreales used chemical warfare to competitively exclude other fungi, while Polyporales physically overgrew their competitors. Mucoromycotan fungi used a similar strategy to the Polyporales. Results of a series of entomopathogenicity trials indicated that B. lecontii was less susceptible to entomopathogenic Hypocreales than an insect model (Galleria mellonella), even though these fungi are known to attack several classes of arthropods. Furthermore, the absence of a negative interaction between B. lecontii and entomopathogenic Hypocreales may indicate a beneficial relationship. When challenged with Polyporales, B. lecontii exhibited high mortality, while G. mellonella was unaffected. This stands in sharp contrast to previous casual observations of the feeding behavior of B. lecontii. Recent discoveries of previously overlooked fungal diversity have been groundbreaking and hint at substantial cryptic fungal biodiversity across the globe. The 200-300 million-year-old association between fungi and the Colobognatha, which includes Brachycybe lecontii, provides an ideal system to uncover biodiversity and examine function of these fungi in a highly understudied and ancient association.
Entomopathogenic fungi routinely kill their hosts before releasing infectious spores, but a few species keep insects alive while sporulating, which enhances dispersal. Transcriptomics- and metabolomics-based studies of entomopathogens with post-mortem dissemination from their parasitized hosts have unraveled infection processes and host responses. However, the mechanisms underlying active spore transmission by Entomophthoralean fungi in living insects remain elusive. Here we report the discovery, through metabolomics, of the plant-associated amphetamine, cathinone, in four Massospora cicadina -infected periodical cicada populations, and the mushroom-associated tryptamine, psilocybin, in annual cicadas infected with Massospora platypediae or Massospora levispora , which likely represent a single fungal species. The absence of some fungal enzymes necessary for cathinone and psilocybin biosynthesis along with the inability to detect intermediate metabolites or gene orthologs are consistent with possibly novel biosynthesis pathways in Massospora . The neurogenic activities of these compounds suggest the extended phenotype of Massospora that modifies cicada behavior to maximize dissemination is chemically-induced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.