Image analysis and enhancement tasks such as tone mapping, colorization, stereo depth, and photomontage, often require computing a solution (e.g., for exposure, chromaticity, disparity, labels) over the pixel grid. Computational and memory costs often require that a smaller solution be run over a downsampled image. Although general purpose upsampling methods can be used to interpolate the low resolution solution to the full resolution, these methods generally assume a smoothness prior for the interpolation.We demonstrate that in cases, such as those above, the available high resolution input image may be leveraged as a prior in the context of a joint bilateral upsampling procedure to produce a better high resolution solution. We show results for each of the applications above and compare them to traditional upsampling methods.
This paper presents a new interactive tool for making local adjustments of tonal values and other visual parameters in an image. Rather than carefully selecting regions or hand-painting layer masks, the user quickly indicates regions of interest by drawing a few simple brush strokes and then uses sliders to adjust the brightness, contrast, and other parameters in these regions. The effects of the user's sparse set of constraints are interpolated to the entire image using an edge-preserving energy minimization method designed to prevent the propagation of tonal adjustments to regions of significantly different luminance. The resulting system is suitable for adjusting ordinary and high dynamic range images, and provides the user with much more creative control than existing tone mapping algorithms. Our tool is also able to produce a tone mapping automatically, which may serve as a basis for further local adjustments, if so desired. The constraint propagation approach developed in this paper is a general one, and may also be used to interactively control a variety of other adjustments commonly performed in the digital darkroom.
This paper proposes an efficient neural network (NN) architecture design methodology called Chameleon that honors given resource constraints. Instead of developing new building blocks or using computationally-intensive reinforcement learning algorithms, our approach leverages existing efficient network building blocks and focuses on exploiting hardware traits and adapting computation resources to fit target latency and/or energy constraints. We formulate platform-aware NN architecture search in an optimization framework and propose a novel algorithm to search for optimal architectures aided by efficient accuracy and resource (latency and/or energy) predictors. At the core of our algorithm lies an accuracy predictor built atop Gaussian Process with Bayesian optimization for iterative sampling. With a one-time building cost for the predictors, our algorithm produces state-of-the-art model architectures on different platforms under given constraints in just minutes. Our results show that adapting computation resources to building blocks is critical to model performance. Without the addition of any bells and whistles, our models achieve significant accuracy improvements against state-of-the-art hand-crafted and automatically designed architectures. We achieve 73.8% and 75.3% top-1 accuracy on ImageNet at 20ms latency on a mobile CPU and DSP. At reduced latency, our models achieve up to 8.5% (4.8%) and 6.6% (9.3%) absolute top-1 accuracy improvements compared to MobileNetV2 and MnasNet, respectively, on a mobile CPU (DSP), and 2.7% (4.6%) and 5.6% (2.6%) accuracy gains over ResNet-101 and ResNet-152, respectively, on an Nvidia GPU (Intel CPU).
Image analysis and enhancement tasks such as tone mapping, colorization, stereo depth, and photomontage, often require computing a solution (e.g., for exposure, chromaticity, disparity, labels) over the pixel grid. Computational and memory costs often require that a smaller solution be run over a downsampled image. Although general purpose upsampling methods can be used to interpolate the low resolution solution to the full resolution, these methods generally assume a smoothness prior for the interpolation.We demonstrate that in cases, such as those above, the available high resolution input image may be leveraged as a prior in the context of a joint bilateral upsampling procedure to produce a better high resolution solution. We show results for each of the applications above and compare them to traditional upsampling methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.