Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).
Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).
Traversable wormholes necessarily require violations of the averaged null energy condition; this being the definition of "exotic matter". However, the theorems which guarantee the energy condition violation are remarkably silent when it comes to making quantitative statements regarding the "total amount" of energy condition violating matter in the spacetime. We develop a suitable measure for quantifying this notion, and demonstrate the existence of spacetime geometries containing traversable wormholes that are supported by arbitrarily small quantities of "exotic matter".
Traversable wormholes have traditionally been viewed as intrinsically topological entities in some multiply connected spacetime. Here, we show that topology is too limited a tool to accurately characterize a generic traversable wormhole: in general one needs geometric information to detect the presence of a wormhole, or more precisely to locate the wormhole throat. For an arbitrary static spacetime we shall define the wormhole throat in terms of a 2-dimensional constant-time hypersurface of minimal area. (Zero trace for the extrinsic curvature plus a "flare-out" condition.) This enables us to severely constrain the geometry of spacetime at the wormhole throat and to derive generalized theorems regarding violations of the energy conditions-theorems that do not involve geodesic averaging but nevertheless apply to situations much more general than the spherically symmetric Morris-Thorne traversable wormhole. [For example: the null energy condition (NEC), when suitably weighted and integrated over the wormhole throat, must be violated.] The major technical limitation of the current approach is that we work in a static spacetime-this is already a quite rich and complicated system.Comment: 25 pages; plain LaTeX; uses epsf.sty (four encapsulated postscript figures
It is by now apparent that topology is too crude a tool to accurately characterize a generic traversable wormhole. In two earlier papers we developed a complete characterization of generic but static traversable wormholes, and in the present paper extend the discussion to arbitrary time-dependent (dynamical) wormholes. A local definition of wormhole throat, free from assumptions about asymptotic flatness, symmetries, future and past null infinities, embedding diagrams, topology, and even time-dependence is developed that accurately captures the essence of what a wormhole throat is, and where it is located. Adapting and extending a suggestion due to Page, we define a wormhole throat to be a marginally anti-trapped surface, that is, a closed two-dimensional spatial hypersurface such that one of the two future-directed null geodesic congruences orthogonal to it is just beginning to diverge. Typically a dynamic wormhole will possess two such throats, corresponding to the two orthogonal null geodesic congruences, and these two throats will not coincide, (though they do coalesce into a single throat in the static limit). The divergence property of the null geodesics at the marginally anti-trapped surface generalizes the "flare-out" condition for an arbitrary wormhole. We derive theorems regarding violations of the null energy condition (NEC) at and near these throats and find that, even for wormholes with arbitrary timedependence, the violation of the NEC is a generic property of wormhole throats. We also discuss wormhole throats in the presence of fully antisymmetric torsion and find that the energy condition violations cannot be dumped into the torsion degrees of freedom. Finally by means of a concrete example we demonstrate that even temporary suspension of 1 energy-condition violations is incompatible with the flare-out property of dynamic throats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.