Natural frequencies, mode shapes and modal damping ratios must be estimated to assess subsea pipeline spans for vortex-induced vibrations (VIV) and response to direct wave loading. Several approximate solutions exist for a linearly elastic pipe under constant axial force supported by linearly elastic springs beyond the span's shoulders. An exact analytical solution has only recently been published. That solution is used here in a Rayleigh-Ritz approximation to account for arch action arising from combined effects of sag under gravity loads and axial restraint at the shoulders. The method allows survey data to be used directly to quantify arch action. Its accuracy is confirmed by finite element analysis. Further, the modal damping ratio is estimated based on the fractions of the potential energy in bending, the axial force, and the soil springs, all of which are determined analytically. Thus, it is found that the effective modal damping ratio increases without a bound as the axial load approaches the buckling load in compression.
Natural frequencies, mode shapes and modal damping ratios must be estimated to assess subsea pipeline spans for vortex-induced vibrations (VIV) and response to direct wave loading. Several approximate solutions exist for a linearly elastic pipe under constant axial force supported by linearly elastic springs beyond the span’s shoulders. An exact analytical solution has only recently been published. That solution is used here in a Rayleigh-Ritz approximation to account for arch action arising from combined effects of sag under gravity loads and axial restraint at the shoulders. The method allows survey data to be used directly to quantify arch action. Its accuracy is confirmed by finite element analysis. Further, the modal damping ratio is estimated based on the fractions of the potential energy in bending, the axial force, and the soil springs, all of which are determined analytically. Thus, it is found that the effective modal damping ratio increases without a bound as the axial load approaches the buckling load in compression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.