Simple ammonium ferrates are competent catalysts for the CO2 coupling with aziridines to yield 5‐substituted 1,3‐oxazolidin‐2‐ones. Good yields with remarkable selectivity are obtained under mild reaction conditions, room temperature, and atmospheric CO2 pressure, especially for non‐hindered N‐alkyl, N‐benzyl and N‐allyl aziridines, without the need of any co‐catalyst. To shed light on the reaction mechanism, an extensive set of theoretical calculations has been carried out. A viable reaction mechanism involving just one ferrate molecule and where the rate determining step is the 1,3‐oxazolidin‐2‐one ring closure has been found, and the corresponding barrier is compatible with the experimental conditions tested in this study.
We have recently shown that simple ammonium ferrates are competent catalyst for the cycloaddition reaction of CO2 to epoxides under moderate reaction conditions (T = 100°C, P(CO2) = 0.8 MPa). We report here that ammonium zincates of general formulae [TBA]2 [ZnX4] (TBA = tetrabutylammonium), simply obtained by treating an ethanolic solution of an appropriate zinc(II) salt with two equivalents of tetrabutylammonium halides, outperform ammonium ferrates in the synthesis of cyclic carbonates under milder reaction conditions (room temperature and atmospheric CO2 pressure). Using [TBA]2[ZnBr4] complex as homogeneous catalyst at 100°C and P(CO2) = 0.8 MPa a 52% conversion of styrene oxide with complete selectivity in styrene carbonate in just 15 min was observed, corresponding to a Turnover frequency (TOF) of 416 h−1. The same catalyst proved to be very active even at room temperature and atmospheric or very moderate CO2 pressures (0.2 MPa), with a quite broad range of substrates, especially in the case of terminal epoxides, with high selectivity towards cyclic carbonate products. The difference in reactivity of terminal and internal epoxides could be exploited using 4-vinylcyclohexene dioxide, where the endocyclic epoxide remained untouched when reacted at room temperature and the formation of the di-carbonate product was observed only at harsher conditions. A multigram scale conversion of propylene oxide was achieved (46 mmol) and the catalyst also proved to be recyclable (3 cycles) by distillation of the product and subsequent addition of fresh reagent, maintaining high conversion values and complete selectivity for propylene carbonate. This simple zinc-based catalytic system, which outperform the recently reported iron-based one by working at much milder conditions, could represent a valuable prospect in both laboratory and industrial scale, combining an inherent cheapness and synthetic easiness that should be deeply considered when the goal is to give value to a waste product as CO2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.