Rare event methods combined with molecular dynamics and macroscopic calculations reveal multiple pathways for the breakdown of the superhydrophobic Cassie state through wetting or cavitation.
In this contribution we explore by means of experiments, theory, and molecular dynamics the effect of pore morphology on the spontaneous extrusion of nonwetting liquids from nanopores. Understanding and controlling this phenomenon is central for manipulating nanoconfined liquids, e.g., in nanofluidic applications, drug delivery, and oil extraction. Qualitatively different extrusion behaviors were observed in high-pressure water intrusion–extrusion experiments on porous materials with similar nominal diameter and hydrophobicity: macroscopic capillary models and molecular dynamics simulations revealed that the very presence or absence of extrusion is connected to the internal morphology of the pores and, in particular, to the presence of small-scale roughness or pore interconnections. Additional experiments with mercury confirmed that this mechanism is generic for nonwetting liquids and is rooted in the pore topology. The present results suggest a rational way to engineer heterogeneous systems for energy and nanofluidic applications in which the extrusion behavior can be controlled via the pore morphology.
Superhydrophobicity, the enhanced hydrophobicity of surfaces decorated with textures of suitable size, is associated with a layer of gas trapped within surface roughness. The reduced liquid/solid contact makes superhydrophobicity attractive for many technological applications. This gas layer, however, can break down with the liquid completely wetting the surface. Experiments have shown that the recovery of the "suspended" superhydrophobic state from the wet one is difficult. Self-recovery-the spontaneous restoring of the gas layer at ambient conditions-is one of the dreams of research in superhydrophobicity as it would allow to overcome the fragility of superhydrophobicity. In this work we have performed a theoretical investigation of the wetting and recovery processes on a set of surfaces characterized by textures of different dimensions and morphology in order to elucidate the optimal parameters for avoiding wetting and achieving self-recovery. Results show that texture size in the nanometer range is a necessary but not sufficient condition for self-recovery: the geometry plays a crucial role, nanopillars prevent self-recovery, while surfaces with square pores exhibit self-recovery even at large positive pressures. However, the optimal morphology for self-recovery, the square pore, is suboptimal for the functional properties of the surface, for example, high slippage. Our calculations show that these two properties are related to regions of the texture separated in space: self-recovery is controlled by the characteristics of the bottom surface, while wetting and slip are controlled by the cavity mouth. We thus propose a modular design strategy which combines self-recovery and good functional properties: Square pores surmounted by ridges achieve self-recovery even at 2 MPa and have a very small liquid/solid contact area. The macroscopic calculations, which allowed us to efficiently devise design criteria, have been validated by atomistic simulations, with the optimal texture showing self-recovery on atomic time scales, τ ∼ 2 ns.
Superhydrophobicity is connected to the presence of gas pockets within surface asperities. Upon increasing the pressure this 'suspended' state may collapse, causing the complete wetting of the rough surface. In order to quantitatively characterize this process on nanostructured surfaces, we perform rare-event atomistic simulations at different pressures and for several texture geometries. Such an approach allows us to identify for each pressure the stable and metastable states and the free energy barriers separating them. Results show that, by starting from the superhydrophobic state and increasing the pressure, the suspended state abruptly collapses at a critical intrusion pressure. If the pressure is subsequently decreased, the system remains trapped in the metastable state corresponding to the wet surface. The liquid can be extruded from the nanostructures only at very negative pressures, by reaching the critical extrusion pressure (spinodal for the confined liquid). The intrusion and extrusion curves form a hysteresis cycle determined by the large free energy barriers separating the suspended and wet states. These barriers, which grow very quickly for pressures departing from the intrusion/extrusion pressure, are shown to strongly depend on the texture geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.