This article examines the new practice of Virtual Shaker Testing (VST), starting from its motivation to its practical implementations and future possible implications. The issues currently experienced during large satellites' vibration testing are discussed, examining practical examples that highlight the coupling existing between the item under test and facility, and that are the basis for the motivation behind the new methodology (i.e. VST). VST is proposed as a way to bypass some of these issues, and here its use as a pre and post shaker test tool is discussed. In the article VST is applied to real test cases (Airbus' large spacecraft Bepi Colombo, built for the European Space Agency's first mission to Mercury), showing computations and real physical test data to illustrate the advantages of the methodology. These are mostly in terms of de-risking of the physical test campaigns (due to the capability to simulate realistically the future physical test thus reducing the probability of aborts and stops during the runs), and an improvement of the quality of the correlation process and related FEM update (resulting from the capability to separate the dynamics of the satellite from the effects of the test equipment); ultimately providing a tool to address questions arising from test response observations, which are many. This tool also offers the possibility to improve vibration testing using 6 DOF facilities. The article is concluded articulating a possible way forward to take maximum advantage of the new methodology, drawing a parallel with the current Satellite/Launch Vehicle Coupled Load Analysis cycles, and proposing a different design and validation philosophy.
In the frame of the development of a videogrammetric system to be used in thermal vacuum chambers at the European Space Research and Technology Centre (ESTEC) and other sites across Europe, the design of a network using micro-cameras was specified by the European Space agency (ESA)-ESTEC. The selected test set-up is the photogrammetric test of the Herschel Satellite Flight Model in the ESTEC Large Space Simulator. The photogrammetric system will be used to verify the Herschel Telescope alignment and Telescope positioning with respect to the Cryostat Vacuum Vessel (CVV) inside the Large Space Simulator during Thermal-Vacuum/Thermal-Balance test phases. We designed a close-range photogrammetric network by heuristic simulation and a videogrammetric system with an overall accuracy of 1:100,000. A semi-automated image acquisition system, which is able to work at low temperatures (-170°C) in order to acquire images according to the designed network has been constructed by ESA-ESTEC. In this paper we will present the videogrammetric system and sub-systems and the results of real measurements with a representative setup similar to the set-up of Herschel spacecraft which was realized in ESTEC Test Centre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.