The latest development in empirical Asset Pricing is the use of Machine Learning methods to address the problem of the factor zoo. These techniques offer great flexibility and prediction accuracy but require special care as they strongly depart from traditional Econometrics. We review and critically assess the most recent and relevant contributions in the literature grouping them into five categories defined by the Machine Learning (ML) approach they employ: regularization, dimension reduction, regression trees/random forest (RF), neural networks (NNs), and comparative analyses. We summarize the empirical findings with particular attention to their economic interpretation providing hints for future developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.