The parasitic effects in stranded, twisted, and Litz wire windings operating at high frequencies are studied. The skin and proximity effects that cause the winding parasitic resistance of an inductor t o increase with the operating frequency are considered. An expression for the ac resistance as a function of the operating frequency i s given. The measured and calculated values of the inductor ac resistance and quality factor are plotted versus frequency and compared. The theoretical results were in good agreement with those experimentally measured.
Absfrucf -A high-frequency model of iron-powder core inductors is studied. The skin and proximity effects that cause the winding parasitic resistance to increase with the operating frequency are considered. The inductor self-resonance due to the parasitic capacitances is taken into account as well. The frequency response of the inductor model is compared to that of an experimentally tested iron-powder core inductor. The first self-resonant frequency is determined from the plot of the measured reactance and allows for the calculation of the parasitic capacitance. Equations for the inductor parasitic resistance are derived in a closed form. Expressions giving the ac resistance as a function of the operating frequency are given. These expressions allow for an accurate prediction of the inductor power loss over a wide frequency range. The measured and calculated values of the inductor impedance magnitude and phase, the real and imaginary parts of the inductor impedance, the inductance, and the inductor quality factor are plotted versus frequency and compared. Theoretical results were in good agreement with those experimentally measured. Therefore, it is demonstrated that the discussed equivalent circuit has a frequency response matching that of the real inductor. Moreover, the circuit model is simple, it allows for an immediate understanding of iron-powder core inductor behavior and can be easily used in computer simulations of electronic circuits.
The skin and proximity effects which increase the ac resistance of the inductor winding are considered. The core losses are studied. Power losses of the inductor are modeled by means of a frequency dependent series resistance. Parasitic capacitances which affect the inductor high-frequency operation are also considered. The model is applicable to cores with and without an air gap. Calculated and measured inductor parameters such as equivalent series inductance (ESL), reactance, equivalent series resistance (ESR), impedance magnitude and phase, and quality factor are plotted as functions of the operating frequency and compared. Calculated results were in good agreement with the measured ones up to the inductor self-resonant frequency. As a consequence, the discussed model is suitable to represent the frequency response of ferrite core inductors and can be effectively used for designing inductors.
A high-frequency model of iron-powder-core inductors is studied. The skin and proximity effects that cause the winding parasitic resistance to increase with the operating frequency are considered. The inductor self-resonance due to the parasitic capacitances is taken into account as well. The frequency response of the inductor model is compared to that of an experimentally tested iron-powder-core inductor. Expressions giving the ac resistance as a function of the operating frequency are given. These expressions allow for an accurate prediction of the inductor power loss over a wide frequency range. The measured and calculated values of the inductor impedance magnitude and phase, the real and imaginary parts of the inductor impedance, the inductance, and the inductor quality factor are plotted versus frequency and compared. Theoretical results were in good agreement with those experimentally measured. A design procedure for solid wire winding inductors based on the results of the inductor modelling is also given in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.