Molecularly imprinted polymers (MIPs) display intriguing recognition properties and can be used as sensor recognition elements or in separation. In this work, we investigated the formation of hierarchical porosity of compositionally varied MIPs using 129 Xe Nuclear Magnetic Resonance (NMR) and 1 H Time Domain Nuclear Magnetic Resonance (TD-NMR). Variable temperature 129 Xe NMR established the morphological variation with respect to the degree of cross-linking, supported by 1 H TD-NMR determination of polymer chain mobility. Together, the results indicate that a high degree of cross-linking stabilizes the porous structure: highly cross-linked samples display a significant amount of accessible mesopores that instead collapse in less structured polymers. No significant differences can be detected due to the presence of templated pores in molecularly imprinted polymers: in the dry state, these specific shapes are too small to accommodate xenon atoms, which, instead, probe higher levels in the porous structure, allowing their study in detail. Additional resonances at a high chemical shift are detected in the 129 Xe NMR spectra. Even though their chemical shifts are compatible with xenon dissolved in bulk polymers, variable temperature experiments rule out this possibility. The combination of 129 Xe and TD-NMR data allows attribution of these resonances to softer superficial regions probed by xenon in the NMR time scale. This can contribute to the understanding of the surface dynamics of polymers.
Porous materials are ubiquitous systems with a large variety of applications from catalysis to polymer science, from soil to life science, from separation to building materials. Many relevant systems of biological or synthetic origin exhibit a hierarchy, defined as spatial organization over several length scales. Their characterization is often elusive, since many techniques can only be employed to probe a single length scale, like the nanometric or the micrometric levels. Moreover, some multiscale systems lack tridimensional order, further reducing the possibilities of investigation. 129Xe nuclear magnetic resonance (NMR) provides a unique and comprehensive description of multiscale porous materials by exploiting the adsorption and diffusion of xenon atoms. NMR parameters like chemical shift, relaxation times, and diffusion coefficient allow the probing of structures from a few angstroms to microns at the same time. Xenon can evaluate the size and shape of a variety of accessible volumes such as pores, layers, and tunnels, and the chemical nature of their surface. The dynamic nature of the probe provides a simultaneous exploration of different scales, informing on complex features such as the relative accessibility of different populations of pores. In this review, the basic principles of this technique will be presented along with some selected applications, focusing on its ability to characterize multiscale materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.