We study a superfluid in a planar annulus hosting vortices with massive cores. An analytical point-vortex model shows that the massive vortices may perform radial oscillations on top of the usual uniform precession of their massless counterpart. Beyond a critical vortex mass, this oscillatory motion becomes unstable and the vortices are driven towards one of the edges. The analogy with the motion of a charged particle in a static electromagnetic field leads to the development of a plasma orbit theory that provides a description of the trajectories which remains accurate even beyond the regime of small radial oscillations. These results are confirmed by the numerical solution of coupled two-component Gross-Pitaevskii equations. The analysis is then extended to a necklace of vortices symmetrically arranged within the annulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.