Predictive control is the strategy that has the greatest reported benefits when it is implemented in a building energy management system. Predictive control requires low-order models to assess different scenarios and determine which strategy should be implemented to achieve a good compromise between comfort, energy consumption and energy cost. Usually, a deterministic approach is used to create low-order models to estimate the indoor CO2 concentration using the differential equation of the tracer-gas mass balance. However, the use of stochastic differential equations based on the tracer-gas mass balance is not common. The objective of this paper is to assess the potential of creating predictive models for a specific room using for the first time a stochastic grey-box modelling approach to estimate future CO2 concentrations. First of all, a set of stochastic differential equations are defined. Then, the model parameters are estimated using a maximum likelihood method. Different models are defined, and tested using a set of statistical methods. The approach used combines physical knowledge and information embedded in the monitored data to identify a suitable parametrization for a simple model that is more accurate than commonly used deterministic approaches. As a consequence, predictive control can be easily implemented in energy management systems.Peer ReviewedPostprint (author's final draft
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.