We initiate the study of the enumerative combinatorics of the intervals in the Dyck pattern poset. More specifically, we find some closed formulas to express the size of some specific intervals, as well as the number of their covering relations. In most of the cases, we are also able to refine our formulas by rank. We also provide the first results on the Möbius function of the Dyck pattern poset, giving for instance a closed expression for the Möbius function of initial intervals whose maximum is a Dyck path having exactly two peaks.
A matching of the set $$[2n]=\{1,2,\ldots ,2n\}$$
[
2
n
]
=
{
1
,
2
,
…
,
2
n
}
is a partition of [2n] into blocks with two elements, i.e. a graph on [2n], such that every vertex has degree one. Given two matchings $$\sigma $$
σ
and $$\tau $$
τ
, we say that $$\sigma $$
σ
is a $$pattern $$
pattern
of $$\tau $$
τ
when $$\sigma $$
σ
can be obtained from $$\tau $$
τ
by deleting some of its edges and consistently relabelling the remaining vertices. This is a partial order relation turning the set of all matchings into a poset, which will be called the matching pattern poset. In this paper, we continue the study of classes of pattern avoiding matchings (see below for previous work on this subject). In particular, we work out explicit formulas to enumerate the class of matchings avoiding two new patterns, obtained by juxtaposition of smaller patterns, and we describe a recursive formula for the generating function of the class of matchings avoiding the lifting of a pattern and two additional patterns. Moreover, we introduce the notion of unlabeled pattern, as a combinatorial way to collect patterns, and we provide enumerative formulas for two classes of matchings avoiding an unlabeled pattern of order three. In one case, the enumeration follows from an interesting bijection between the matchings of the class and ternary trees. The last part of the paper initiates the study of the matching pattern poset, by providing some preliminary results about its Möbius functions and the structure of some simple intervals.
We continue the study of permutations avoiding the vincular pattern 1−32−4 by constructing a generating tree with a single label for these permutations. This construction finally provides a clearer explanation of why a certain recursive formula found by Callan actually counts these permutations, since this formula was originally obtained as a consequence of a very intricate bijection with a certain class of ordered rooted trees. This responds to a theoretical issue already raised by Duchi, Guerrini and Rinaldi. As a byproduct, we also obtain an algorithm to generate all these permutations and we refine their enumeration according to a simple statistic, which is the number of right-to-left maxima to the right of 1.
We initiate the study of the enumerative combinatorics of the intervals in the Dyck pattern poset. More specifically, we find some closed formulas to express the size of some specific intervals, as well as the number of their covering relations. In most of the cases, we are also able to refine our formulas by rank. We also provide the first results on the Möbius function of the Dyck pattern poset, giving for instance a closed expression for the Möbius function of initial intervals whose maximum is a Dyck path having exactly two peaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.