A novel class of receptors consisting of a rigid diketopiperazine backbone and peptidic side chains has been developed with the use of combinatorial chemistry. These diketopiperazine receptors interact with peptidic substrates with high specificity as shown in combinatorial on-bead assays. The central diketopiperazine moiety can be easily obtained from natural 4-hydroxyproline and serves as a rigidifying template for the peptidic modules which allow for structural as well as functional variations. Screenings of several dye-marked receptor prototypes against an encoded tripeptide library demonstrated not only the high binding specificities of the diketopiperazine receptors towards peptides but also revealed that small structural changes induce significant changes in their binding properties.
Diastereoselectivity in reactions of aryl-stabilised ammonium ylides are highly sensitive to the nature of the amine and the ylide substituent. DFT calculations are consistent with a mechanism in which reversibility in betaine formation [despite the high energy (and therefore instability) of ammonium ylides] is finely balanced due to the high barrier to ring closure.
Combinatorial binding studies revealed that the di(trans-4-aminoproline)diketopiperazine is an ideal template for two-armed receptors with highly selective binding properties towards peptides. It is not only superior to structurally very different diamines but also to the diastereomeric di(cis-4-aminoproline)diketopiperazine. These empiric results are rationalized by the analysis of the conformation of the diastereomeric diketopiperazines in the solid state, by X-ray crystal structure analysis, as well as by NMR studies in solution: to observe highly selective binding, the template needs to be not only conformationally rigid but it must have a specific turn geometry. The combination of combinatorial binding studies, X-ray crystal structure analysis, and NMR spectroscopy gave insight into why the trans,trans-diketopiperazine is a superior template compared to other diamines. Additionally, the results provide a guide for the rational design of two-armed receptors with good binding properties towards peptidic guests.
The scope of a solid phase binding assay for the determination of binding affinities between a solid supported substrate and a coloured host has been studied by investigating the influence of the nature and the loading of the solid support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.