The Kolbe reaction has seen limited applications owing to its extremely poor chemoselectivity and reliance on precious metal-based electrodes, despite its potential to be one of the workhorse reactions of organic synthesis for C–C bond formation in both discovery and process settings. Although hundreds of studies over a century aimed to improve its efficiency and selectivity, general solutions have yet to be found. Herein, an exceedingly simple solution to this long-standing challenge is presented by merely tuning the waveform employed. Thus, switching from classic direct current (DC) to rapid alternating polarity (rAP), a broad range of functional groups can now be tolerated using inexpensive and sustainable carbon-based electrodes. A variety of high-value molecules ranging from useful unnatural amino acids to promising polymer building blocks are now accessible from readily available carboxylic acids, including biomass-derived acids. The practicality of the rAP-Kolbe reaction enables facile implementation of large-scale reactions, realizing access to novel degradable polymers from biomass. Preliminary mechanistic studies implicate the role of waveform in modulating the local pH around electrodes, which in turn affects the underlying redox processes. The ease, efficiency, and chemoselectivity of the rAP-Kolbe reaction finally opens the door to the widespread mainstream adoption of this classic reaction.
The Kolbe reaction has seen limited applications owing to its extremely poor chemoselectivity and reliance on precious metal-based electrodes, despite its potential to be one of the workhorse reactions of organic synthesis for C–C bond formation in both discovery and process settings. Although hundreds of studies over a century aimed to improve its efficiency and selectivity, general solutions have yet to be found. Herein, an exceedingly simple solution to this long-standing challenge is presented by merely tuning the waveform employed. Thus, switching from classic direct current (DC) to rapid alternating polarity (rAP), a broad range of functional groups can now be tolerated using inexpensive and sustainable carbon-based electrodes. A variety of high-value molecules ranging from useful unnatural amino acids to promising polymer building blocks are now accessible from readily available carboxylic acids, including biomass-derived acids. The practicality of the rAP-Kolbe reaction enables facile implementation of large-scale reactions, realizing access to novel degradable polymers from biomass. Preliminary mechanistic studies implicate the role of waveform in modulating the local pH around electrodes, which in turn affects the underlying redox processes. The ease, efficiency, and chemoselectivity of the rAP-Kolbe reaction finally opens the door to the widespread mainstream adoption of this classic reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.