Digital fabrication devices exploit basic technologies in order to create tangible reproductions of 3D digital models. Although current 3D printing pipelines still suffer from several restrictions, accuracy in reproduction has reached an excellent level. The manufacturing industry has been the main domain of 3D printing applications over the last decade. Digital fabrication techniques have also been demonstrated to be effective in many other contexts, including the consumer domain. The Cultural Heritage is one of the new application contexts and is an ideal domain to test the flexibility and quality of this new technology. This survey overviews the various fabrication technologies, discussing their strengths, limitations and costs. Various successful uses of 3D printing in the Cultural Heritage are analysed, which should also be useful for other application contexts. We review works that have attempted to extend fabrication technologies in order to deal with the specific issues in the use of digital fabrication in the Cultural Heritage. Finally, we also propose areas for future research.
The photorealistic acquisition of 3D objects often requires color information from digital photography to be mapped on the acquired geometry, in order to obtain a textured 3D model. This paper presents a novel fully automatic 2D/3D global registration pipeline consisting of several stages that simultaneously register the input image set on the corresponding 3D object. The first stage exploits Structure From Motion (SFM) on the image set in order to generate a sparse point cloud. During the second stage, this point cloud is aligned to the 3D object using an extension of the 4 Point Congruent Set (4PCS) algorithm for the alignment of range maps. The extension accounts for models with different scales and unknown regions of overlap. In the last processing stage a global refinement algorithm based on mutual information optimizes the color projection of the aligned photos on the 3D object, in order to obtain high quality textures. The proposed registration pipeline is general, capable of dealing with small and big objects of any shape, and robust. We present results from six real cases, evaluating the quality of the final colors mapped onto the 3D object. A comparison with a ground truth dataset is also presented
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.