This paper investigates the effectiveness of systematically probing Google Trends against textual translations of visual aspects as exogenous knowledge to predict the sales of brand-new fashion items, where past sales data is not available, but only an image and few metadata are available. In particular, we propose GTM-Transformer, standing for Google Trends Multimodal Transformer, whose encoder works on the representation of the exogenous time series, while the decoder forecasts the sales using the Google Trends encoding, and the available visual and metadata information. Our model works in a non-autoregressive manner, avoiding the compounding effect of the first-step errors. As a second contribution, we present the VISUELLE dataset, which is the first publicly available dataset for the task of new fashion product sales forecasting, containing the sales of 5577 new products sold between 2016-2019, derived from genuine historical data of Nunalie, an Italian fast-fashion company. Our dataset is equipped with images of products, metadata, related sales, and associated Google Trends. We use VISUELLE to compare our approach against state-of-the-art alternatives and numerous baselines, showing that GTM-Transformer is the most accurate in terms of both percentage and absolute error. It is worth noting that the addition of exogenous knowledge boosts the forecasting accuracy by 1.5% WAPE wise, showing the importance of exploiting Google Trends. The code and dataset are both available at https://github.com/HumaticsLAB/GTM-Transformer
Abstract. Biclustering, namely simultaneous clustering of genes and samples, represents a challenging and important research line in the expression microarray data analysis. In this paper, we investigate the use of Affinity Propagation, a popular clustering method, to perform biclustering. Specifically, we cast Affinity Propagation into the Couple Two Way Clustering scheme, which allows to use a clustering technique to perform biclustering. We extend the CTWC approach, adapting it to Affinity Propagation, by introducing a stability criterion and by devising an approach to automatically assemble couples of stable clusters into biclusters.Empirical results, obtained in a synthetic benchmark for biclustering, show that our approach is extremely competitive with respect to the state of the art, achieving an accuracy of 91% in the worst case performance and 100% accuracy for all tested noise levels in the best case.
Multiple Structure Recovery (MSR) represents an important and challenging problem in the field of Computer Vision and Pattern Recognition. Recent approaches to MSR advocate the use of clustering techniques. In this paper we propose an alternative method which investigates the usage of biclustering in MSR scenario. The main idea behind the use of biclustering approaches to MSR is to isolate subsets of points that behave “coherently” in a subset of models/structures. Specifically, we adopt a recent generative biclustering algorithm and we test the approach on a widely accepted MSR benchmark. The results show that biclustering techniques favorably compares with state-of-the-art clustering methods
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.