Our study highlights the use of the DNA repair gene MtTdp2α as a tool for improving the plant response to heavy metal stress. Tyrosyl-DNA phosphodiesterase 2 (Tdp2), involved in the removal of DNA topoisomerase II-mediated DNA damage and cell proliferation/differentiation signalling in animal cells, is still poorly characterised in plants. The Medicago truncatula lines Tdp2α-13c and Tdp2α-28 overexpressing the MtTdp2α gene and control (CTRL) line were exposed to 0.2 mM CuCl2. The DNA diffusion assay revealed a significant reduction in the percentage of necrosis caused by copper in the aerial parts of the Tdp2α-13c and Tdp2α-28 plants while neutral single cell gel electrophoresis highlighted a significant decrease in double strand breaks (DSBs), compared to CTRL. In the copper-treated Tdp2α-13c and Tdp2α-28 lines there was up-regulation (up to 4.0-fold) of genes encoding the α and β isoforms of Tyrosyl-DNA phosphodiesterase 1, indicating the requirement for Tdp1 function in the response to heavy metals. As for DSB sensing, the MtMRE11, MtRAD50 and MtNBS1 genes were also significantly up-regulated (up to 2.3-fold) in the MtTdp2α-overexpressing plants grown under physiological conditions, compared to CTRL line, and then further stimulated in response to copper. The basal antioxidant machinery was always activated in all the tested lines, as indicated by the concomitant up-regulation of MtcytSOD and MtcpSOD genes (cytosolic and chloroplastic Superoxide Dismutase), and MtMT2 (type 2 metallothionein) gene. The role of MtTdp2α gene in enhancing the plant response to genotoxic injury under heavy metal stress is discussed.
The bulk production of recombinant enzymes by either prokaryotic or eukaryotic organisms might contribute to replace environmentally non-friendly chemistry-based industrial processes with enzyme-based biocatalysis, provided the cost of enzyme production is low. In this context, it is worth noting that the production of recombinant proteins by photosynthetic organisms offer both eukaryotic (nuclear) and prokaryotic (chloroplast) alternatives, along with the advantage of an autotrophic nutrition. Compared to nuclear transformation, chloroplast transformation generally allows a higher level of accumulation of the recombinant protein of interest. Furthermore, among the photosynthetic organisms, there is a choice of using either multicellular or unicellular ones. Tobacco, being a non-food and non-feed plant, has been considered as a good choice for producing enzymes with applications in technical industry, using a transplastomic approach. Also, unicellular green algae, in particular Chlamydomonas reinhardtii, have been proposed as candidate organisms for the production of recombinant proteins. In the light of the different features of these two transplastomic systems, we decided to make a direct comparison of the efficiency of production of a bacterial endoglucanase. With respect to the amount obtained, 14 mg g of biomass fresh weight equivalent to 8-10% of the total protein content and estimated production cost, 1.5-2€ kg, tobacco proved to be far more favorable for bulk enzyme production when compared to C. reinhardtii which accumulated this endoglucanase at 0.003% of the total protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.