Validity and reliability as scientific quality criteria have to be considered when using optical motion capture (OMC) for research purposes. Literature and standards recommend individual laboratory setup evaluation. However, system characteristics such as trueness, precision and uncertainty are often not addressed in scientific reports on 3D human movement analysis. One reason may be the lack of simple and practical methods for evaluating accuracy parameters of OMC. A protocol was developed for investigating the accuracy of an OMC system (Vicon, volume 5.5×1.2×2.0m(3)) with standard laboratory equipment and by means of trueness and uncertainty of marker distances. The study investigated the effects of number of cameras (6, 8 and 10), measurement height (foot, knee and hip) and movement condition (static and dynamic) on accuracy. Number of cameras, height and movement condition affected system accuracy significantly. For lower body assessment during level walking, the most favorable setting (10 cameras, foot region) revealed mean trueness and uncertainty to be -0.08 and 0.33mm, respectively. Dynamic accuracy cannot be predicted based on static error assessments. Dynamic procedures have to be used instead. The significant influence of the number of cameras and the measurement location suggests that instrumental errors should be evaluated in a laboratory- and task-specific manner. The use of standard laboratory equipment makes the proposed procedure widely applicable and it supports the setup process of OCM by simple functional error assessment. Careful system configuration and thorough measurement process control are needed to produce high-quality data.
IntroductionThe translation of the navicular bone is thought to be a representative surrogate measure to assess foot pronation and hence foot function; however, it is not known how it is related to multi-segment foot kinematics.MethodsCranio-caudal (NCC) and medio-lateral (NML) navicular translation and multi-segment foot kinematics from the Oxford Foot Model (OFM) were simultaneously assessed during the stance phase of walking in 20 healthy adults. Relationships to forefoot to hindfoot (FFtoHF), hindfoot to tibia (HFtoTBA) and global hindfoot (HFL) motion were explored by cross-correlations at zero phase shift.ResultsFFtoHF sagittal, transversal and frontal plane angles showed median cross correlations of -0.95, 0.82 and 0.53 with NCC and of 0.78, -0.81 and -0.90 with NML. HFtoTBA transversal and frontal plane angles had correlations of 0.15 and 0.74 with NCC and of -0.38 and -0.83 with NML. The HFL frontal plane angle showed correlations of 0.41 and -0.44 with NCC and NML, respectively.DiscussionThe strongest relationships were found between FFtoHF sagittal plane angles and NCC and between FFtoHF frontal plane angles and NML. However, cranio-caudal and medio-lateral navicular translation seem to be reasonable surrogates for the triplanar motion between the fore- and hindfoot. The medial longitudinal arch dropped and bulged medially, while the forefoot dorsiflexed, abducted and everted with respect to the hindfoot and vice-versa. The lower cross-correlation coefficients between the rear foot parameters and NCC/NML indicated no distinct relationships between rearfoot frontal plane and midfoot kinematics. The validity of rearfoot parameters, like Achilles tendon or Calcaneal angle, to assess midfoot function must be therefore questioned. The study could also not confirm a systematic relationship between midfoot kinematics and the internal/external rotation between the hindfoot and the tibia. The measurement of navicular translation is suggested as an alternative to more complex multi-segment foot models to assess foot function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.