The train timetabling problem aims at determining a periodic timetable for a set of trains that does not violate track capacities and satisfies some operational constraints. In particular, we concentrate on the problem of a single, one-way track linking two major stations, with a number of intermediate stations in between. Each train connects two given stations along the track (possibly different from the two major stations) and may have to stop for a minimum time in some of the intermediate stations. Trains can overtake each other only in correspondence of an intermediate station, and a minimum time interval between two consecutive departures and arrivals of trains in each station is specified. In this paper, we propose a graph theoretic formulation for the problem using a directed multigraph in which nodes correspond to departures/arrivals at a certain station at a given time instant. This formulation is used to derive an integer linear programming model that is relaxed in a Lagrangian way. A novel feature of our model is that the variables in the relaxed constraints are associated only with nodes (as opposed to arcs) of the aforementioned graph. This allows a considerable speed-up in the solution of the relaxation. The relaxation is embedded within a heuristic algorithm which makes extensive use of the dual information associated with the Lagrangian multipliers. We report extensive computational results on real-world instances provided from Ferrovie dello Stato SpA, the Italian railway company, and from Ansaldo Segnalamento Ferroviario SpA.
We consider a variant of the classical symmetric Traveling Salesman Problem in which the nodes are partitioned into clusters and the salesman has to visit at least one node for each cluster. This NP-hard problem is known in the literature as the symmetric Generalized Traveling Salesman Problem (GTSP), and finds practical applications in routing, scheduling and location-routing. In a companion paper (Fischetti et al. [Fischetti, M., J. J. Salazar, P. Toth. 1995. The symmetric generalized traveling salesman polytope. Networks 26 113–123.]) we modeled GTSP as an integer linear program, and studied the facial structure of two polytopes associated with the problem. Here we propose exact and heuristic separation procedures for some classes of facet-defining inequalities, which are used within a branch-and-cut algorithm for the exact solution of GTSP. Heuristic procedures are also described. Extensive computational results for instances taken from the literature and involving up to 442 nodes are reported.
We present a Lagrangian-based heuristic for the well-known Set Covering Problem (SCP). The algorithm was initially designed for solving very large scale SCP instances, involving up to 5,000 rows and 1,000,000 columns, arising from crew scheduling in the Italian Railway Company, Ferrovie dello Stato SpA. In 1994 Ferrovie dello Stato SpA, jointly with the Italian Operational Research Society, organized a competition, called FASTER, intended to promote the development of algorithms capable of producing good solutions for these instances, since the classical approaches meet with considerable difficulties in tackling them. The main characteristics of the algorithm we propose are (1) a dynamic pricing scheme for the variables, akin to that used for solving large-scale LPs, to be coupled with subgradient optimization and greedy algorithms, and (2) the systematic use of column fixing to obtain improved solutions. Moreover, we propose a number of improvements on the standard way of defining the step-size and the ascent direction within the subgradient optimization procedure, and the scores within the greedy algorithms. Finally, an effective refining procedure is proposed. Our code won the first prize in the FASTER competition, giving the best solution value for all the proposed instances. The algorithm was also tested on the test instances from the literature: in 92 out of the 94 instances in our test bed we found, within short computing time, the optimal (or the best known) solution. Moreover, among the 18 instances for which the optimum is not known, in 6 cases our solution is better than any other solution found by previous techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.