Black point is a fungal disease of wheat, mainly associated with mycotoxigenic Alternaria species. Affected wheat kernels are characterized by dark brown discolouration of the embryo region and reduction of grain quality. Potential risk is the possible accumulation of Alternaria mycotoxins, alternariol (AOH), alternariol-monomethyl ether (AME), tenuazonic acid (TA), and altenuene (ALT), provided by haemato-toxic, genotoxic, and mutagenic activities. One hundred and twenty durum wheat samples belonging to 30 different genotypes grown in Bologna and Modena areas, in Italy, showing black point symptoms, were analyzed for Alternaria species and their mycotoxin contamination. Alternariol was selected as an indicator of the capability of the Alternaria species to produce mycotoxin in vivo in field conditions. The data showed that Alternaria species occurred in 118 out of 120 wheat kernels samples, with the incidence of infected kernels ranging between 1% and 26%. Moreover, AOH was detected by using a HPLC with a diode array detector (LC-DAD) in 98 out of 120 samples with values ranging between 24 and 262 µg Kg−1. Ninety-two Alternaria representative strains, previously identified morphologically, were identified at species/section level using gene sequencing, and therefore were analyzed for their mycotoxin profiles. Eighty-four strains, phylogenetically grouped in the Alternaria section, produced AOH, AME, and TA with values up to 8064, 14,341, and 3683 µg g−1, respectively, analyzed by using a LC-DAD. On the other hand, eight Alternaria strains, included in Infectoriae Section, showed a very low or no capability to produce mycotoxins.
Human skin is populated by various microorganisms, the so-called microbiota, such as bacteria, viruses, yeasts, fungi, and archaea. The skin microbiota is in constant contact with the surrounding environment which can alter its eubiotic state. Recently it has been also observed that the application of cosmetic products can alter the balance of the skin microbiota. This effect may be attributed to many factors including the residual activity of the preservatives on the skin. In the present work, we studied the effect of eleven preservatives commonly found in cosmetic products on Propionibacterium acnes, Staphylococcus epidermidis, and Staphylococcus aureus in vitro using 3D skin models and culture-dependent methods. Also, the effect on Histone deacetylase 3 (HDAC3) has been investigated. Among tested combinations, three resulted as the best suitable for restoring a pre-existing dysbiosis since they act moderately inhibiting C. acnes and strongly S. aureus without simultaneously inhibiting the growth of S. epidermidis. The other four combinations resulted as the best suitable for use in topical products for skin and scalp in which it is necessary to preserve the eubiosis of the microbiota. Some of the tested were also able to increase HDAC3 expression. Taking together these data highlight the role of preservatives of skin resident microflora dynamics and could provide a reference for correctly choice preservatives and dosage in cosmetic formulations to preserve or restore homeostasis of skin microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.