LIMA does not interfere with the intraoperative workflow and results in low complication and early local recurrence rates, even when simultaneously targeting multiple lesions. LIMA may represent a valid therapy option for patients with extensive hepatic disease within a multimodal treatment approach.
Accurate hepatic vessel segmentation and registration using ultrasound (US) can contribute to beneficial navigation during hepatic surgery. However, it is challenging due to noise and speckle in US imaging and liver deformation. Therefore, a workflow is developed using a reduced 3D U-Net for segmentation, followed by non-rigid coherent point drift (CPD) registration. By means of electromagnetically tracked US, 61 3D volumes were acquired during surgery. Dice scores of 0.77, 0.65 and 0.66 were achieved for segmentation of all vasculature, hepatic vein and portal vein respectively. This compares to inter-observer variabilities of 0.85, 0.88 and 0.74 respectively. Target registration error at a tumor lesion of interest was lower (7.1 mm) when registration is performed either on the hepatic or the portal vein, compared to using all vasculature (8.9 mm). Using clinical data, we developed a workflow consisting of multi-class segmentation combined with selective non-rigid registration that leads to sufficient accuracy for integration in computer assisted liver surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.