Lorentz symmetry breaking at very high energies may lead to photon dispersion relations of the form omega2=k2+xink2(k/MPl)n with new terms suppressed by a power n of the Planck mass MPl. We show that first and second order terms of size |xi1|>orsimilar10(-14) and xi2
The propagation of photons, electrons and positrons at ultra-high energies above ∼ 10 19 eV can be changed considerably if the dispersion relations of these particles are modified by terms suppressed by powers of the Planck scale. We recently pointed out that the current non-observation of photons in the ultra-high energy cosmic ray flux at such energies can put strong constraints on such modified dispersion relations. In the present work we generalize these constraints to all three Lorentz invariance breaking parameters that can occur in the dispersion relations for photons, electrons and positrons at first and second order suppression with the Planck scale. We also show how the excluded regions in these three-dimensional parameter ranges would be extended if ultra-high energy photons were detected in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.