BackgroundExternal ventricular drain (EVD) placement is mandatory for several pathologies. The misplacement rate of the EVD varies widely in literature, ranging from 12.3 to 60%. The purpose of this simulation study is to provide preliminary data about the possibility of increasing the safety of one of the most common life-saving procedures in neurosurgery by testing a new device for EVD placement.MethodsWe used a novel guide for positioning the ventricular catheter (patent RM2014A000376). The trajectory was assessed using 25 anonymized head CT scans. The data sets were used to conduct three-dimensional computer-based and combined navigation and augmented reality-based simulations using plaster models. The data set inclusion criteria were volumetric head CT scan, without midline shift, of patients older than 18. Evans’ index was used to quantify the ventricle’s size. We excluded patients with slit ventricles, midline shift, skull fractures, or complex skull malformations. The proximal end of the device was tested on the cadaver.ResultsThe cadaveric tests proved that a surgeon could use the device without any external help. The multimodal simulation showed Kakarla grade 1 in all cases but one (grade 2) on both sides, after right and left EVD placement. The mean Evans’ index was 0.28. The geometric principles that explain the device’s efficacy can be summarized by studying the properties of circumference and chord. The contact occurs, for each section considered, at the extreme points of the chord. Its axis, perpendicular to the plane tangent to the spherical surface at the entry point, corresponds to the direction of entry of the catheter guided by the instrument.ConclusionAccording to our multimodal simulation on cadavers, 3D computer-based simulation, 3D plaster modeling, 3D neuronavigation, and augmented reality, the device promises to offer safer and effective EVD placement. Further validation in future clinical studies is recommended.
Aims:
Chest wall blocks are effective alternatives for postoperative pain control in mitral valve surgery in right mini-thoracotomy (mini-MVS). We compared the efficacy of Serratus Anterior plane block (SAPB) and Erector Spinae plane block (ESPB) on postoperative pain relief after mini-MVS.
Settings and Design:
It is a prospective, observational study.
Material and Methods:
A total of 85 consecutive patients undergoing continuous SAPB and continuous ESPB for mini-MVS from March 2019 to October 2020 were included. The primary outcome was the assessment of postoperative pain evaluated as absolute value of NRS at 12, 24 and 48 h. Secondary outcomes were assessment of salvage analgesia (both opioids and NSAIDs), incidence of mild adverse effects (i.e. nausea, vomiting, and incorrect catheter placement) and timing of postoperative course (ICU and hospital length of stay, duration of mechanical ventilation, ventilator-free days).
Results:
The median NRS was 0.00 (0.00–3.00) at 12 h and 0.00 (0.00–2.00) at 24 and 48 h. No significant differences were observed between groups. Postoperative morphine consumption in the first 24 h was similar in both groups (
P
= 0.76), whereas between 24 and 48 h was significantly less in the ESPB group compared with SAPB group,
P
= 0.013. NSAIDs median consumption and Metoclopramide consumption were significantly lower in the ESPB group compared to SAPB group (
P
= 0.002 and
P
= 0.048, respectively).
Conclusions:
ESPB, even more than SAPB, appears to be a feasible and effective strategy for the management of postoperative pain, allowing good quality analgesia with low consumption of opioids, NSAIDs and antiemetic drugs.
The use of ECPELLA in patients with severe lung disease may result in an unfavorable phenomenon of differential hypoxia. The simultaneous evaluation of three arterial blood samples from different arterial line (right radial artery, left radial artery, ECMO arterial line) in patients at risk of Harlequin syndrome (also called differential hypoxemia (DH)) can localize the “mixing cloud” along the aorta. Focusing the attention on the “mixing cloud” position instead of on isolated flows of Veno-Arterial Extracorporeal Membrane Oxygenation (VA ECMO) and Impella CP makes the decision making easier about how to modify MCSs flows according to the clinical context. Herein, we present two cases in which ECPELLA configuration was used to treat a cardiogenic shock condition and how the ECPELLA-induced hypoxia was managed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.