Gastrointestinal (GI) cancers are characterized by extensive tumor stroma that both promotes tumor progression and acts as a physical barrier for adjacent tumor cells, limiting the effect of current treatment modalities. Oncolytic virotherapy is currently investigated in clinical trials as a novel therapeutic agent for different malignancies of the GI tract, but it is largely unknown whether these viruses can also target the tumor stroma. Here, we investigated the tropism of two commonly studied OVs, adenovirus and reovirus, towards primary GI fibroblasts from human oesophageal, gastric, duodenal and pancreatic carcinomas (N = 36). GI fibroblasts were susceptible to type 3 Dearing (T3D) strain R124 and bioselected mutant reovirus (jin-3) infection but not oncolytic adenovirus (Ad5-Δ24). Efficient infection and apoptosis of human and mouse GI cancer-derived fibroblasts by these reoviruses was partially dependent on the expression of the reovirus entry receptor, Junctional Adhesion Molecule-A (JAM-A). Moreover, human GI cancer organoid-fibroblast co-cultures showed higher overall infectivity when containing JAM-A expressing fibroblasts as compared to JAM-A negative fibroblasts, indicating a potential role of JAM-A expressing fibroblasts for viral dissemination. We further show that JAM-A is not only necessary for efficient reovirus infection of fibroblasts but also partially mediates reovirus-induced apoptosis, dependent on signaling through the C-terminal PDZ-domain of JAM-A. Altogether, our data show the presence of JAM-A expressing fibroblasts in both human and murine GI cancers that are amenable to infection and induction of apoptosis by reovirus, extending the potential anti-cancer actions of reovirus with stromal targeting.
<div>Abstract<p>Solid cancer cells escape the primary tumour mass by transitioning from an epithelial-like state to an invasive migratory state. As they escape, metastatic cancer cells employ interchangeable modes of invasion, transitioning between fibroblast-like mesenchymal movement to amoeboid migration, where cells display a rounded morphology and navigate the extracellular matrix in a protease-independent manner. However, the gene transcripts that orchestrate the switch between epithelial, mesenchymal and amoeboid states remain incompletely mapped, mainly due to a lack of methodologies that allow the direct comparison of the transcriptomes of spontaneously invasive cancer cells in distinct migratory states. Here, we report a novel single cell isolation technique that provides detailed 3D data on melanoma growth and invasion, and enables the isolation of live, spontaneously invasive cancer cells with distinct morphologies and invasion parameters. Via the expression of a photoconvertible fluorescent protein, compact epithelial-like cells at the periphery of a melanoma mass, elongated cells in the process of leaving the mass, and rounded amoeboid cells invading away from the mass were tagged, isolated and subjected to single cell RNA-sequencing. 462 differentially expressed genes were identified, from which two candidate proteins were selected for further pharmacological perturbation, yielding striking effects on tumour escape and invasion, in line with the predictions from the transcriptomics data. This work describes a novel, adaptable and readily implementable method for the analysis of the earliest phases of tumour escape and metastasis, and its application to the identification of genes underpinning the invasiveness of malignant melanoma.</p></div>
<div>Abstract<p>Solid cancer cells escape the primary tumour mass by transitioning from an epithelial-like state to an invasive migratory state. As they escape, metastatic cancer cells employ interchangeable modes of invasion, transitioning between fibroblast-like mesenchymal movement to amoeboid migration, where cells display a rounded morphology and navigate the extracellular matrix in a protease-independent manner. However, the gene transcripts that orchestrate the switch between epithelial, mesenchymal and amoeboid states remain incompletely mapped, mainly due to a lack of methodologies that allow the direct comparison of the transcriptomes of spontaneously invasive cancer cells in distinct migratory states. Here, we report a novel single cell isolation technique that provides detailed 3D data on melanoma growth and invasion, and enables the isolation of live, spontaneously invasive cancer cells with distinct morphologies and invasion parameters. Via the expression of a photoconvertible fluorescent protein, compact epithelial-like cells at the periphery of a melanoma mass, elongated cells in the process of leaving the mass, and rounded amoeboid cells invading away from the mass were tagged, isolated and subjected to single cell RNA-sequencing. 462 differentially expressed genes were identified, from which two candidate proteins were selected for further pharmacological perturbation, yielding striking effects on tumour escape and invasion, in line with the predictions from the transcriptomics data. This work describes a novel, adaptable and readily implementable method for the analysis of the earliest phases of tumour escape and metastasis, and its application to the identification of genes underpinning the invasiveness of malignant melanoma.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.