In this paper, we describe Remote Monitoring Validation Engineering System (ReMoVES), a newly-developed platform for motion rehabilitation through serious games and biophysical sensors. The main features of the system are highlighted as follows: motion tracking capabilities through Microsoft Kinect V2 and Leap Motion are disclosed and compared with other solutions; the emotional state of the patient is evaluated with heart rate measurements and electrodermal activity monitored by Microsoft Band 2 during the execution of the functional exercises planned by the therapist. The ReMoVES platform is conceived for home-based rehabilitation after the hospitalisation period, and the system will deploy machine learning techniques to provide an automated evaluation of the patient performance during the training. The algorithms should deliver effective reports to the therapist about the training performance while the patient exercises on their own. The game features that will be described in this manuscript represent the input for the training set, while the feedback provided by the therapist is the output. To face this supervised learning problem, we are describing the most significant features to be used as key indicators of the patient's performance along with the evaluation of their accuracy in discriminating between good or bad patient actions.
Digital solutions for unilateral spatial neglect (USN) assessment and treatment are nowadays of great interest, because of both the possibility of combining them with other rehabilitation practices, and the easy-to-understand data and indicators they collect. The ReMoVES platform, developed in DITEN laboratories, is conceived in the Assistive Technologies framework and provides motor and cognitive exergames and activities to be performed in conjunction with traditional rehabilitation.In this work, two case-studies, related to the USN rehabilitation, are presented. The combination of cognitive therapy, delivered by the ReMoVES platform, and transcranial directcurrent stimulation (tDCS) technique was used as rehabilitation treatment for both the patients.Data collected at the beginning or at the end of the rehabilitation process, or also during the treatment sessions, are shown and discussed in this paper. This work is a preliminary part of a wider one, that will be conducted involving many different rehabilitation centers, aimed at proving the validity of such an approach to USN treatments.
The possibility to prescribe home-based rehabilitation activity after stroke strongly increases the amount of exercises to perform, thus helping the maintenance of relearned skills, the completion of the rehabilitation program, the practice of physical and mental concentration. Even more important is the monitoring of the patient activity at home, as it is provided by the Remote Monitoring Validation Engineering System (ReMoVES) platform [1]. The present work refers to the implementation and integration in ReMoVES platform of a digital and web-based version of Albert's [2] and Line Bisection [3] tests devoted to visuo-spatial neglect evaluation and its remote monitoring. A statistical analysis devoted to validating testretest reliability is proposed. Concurrent correlation between digital and traditional administration of the tests is presented, in order to evaluate the validity of the remote monitoring of the home-administration through ReMoVES platform.
Internet of Things (IoT) solutions are a concrete answer to many needs in the healthcare framework since they enable remote support for patients and foster continuity of care. Currently, frail elderly people are among end users who most need and would benefit from IoT solutions from both a social and a healthcare point of view. Indeed, IoT technologies can provide a set of services to monitor the healthcare of the elderly or support them in order to reduce the risk of injuries, and preserve their motor and cognitive abilities. The main feature of IoT solutions for the elderly population is ease of use. Indeed, to fully exploit the potential of an IoT solution, patients should be able to autonomously deal with it. The remote-monitoring validation engineering system (ReMoVES) described here is an IoT solution that caters to the specific needs of frail elderly individuals. Its architecture was designed for use at rehabilitation centers and at patients’ homes. The system is user-friendly and comfortably usable by persons who are not familiar with technology. In addition, exergames enhance patient engagement in order to curb therapy abandonment. Along with the technical presentation of the solution, a real-life scenario application is described referring to sit-to-stand activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.