Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination.
Future research focused on EMT should address some key points that are still unclear. They include: i) the role of the reverse phenomenon (i.e., mesenchymal-epithelial transition) that is likely regulated in the final stages of tumor progression, or that of mesenchymal-amoeboid transition, a plasticity program of cancer cells, which often follows EMT and offers a further metastatic advantage, and ii) the molecular basis of the correlation between stemness, EMT and ROS content.
Proper attachment to the extracellular matrix (ECM) is essential for cell survival. The loss of integrin-mediated cell-ECM contact results in an apoptotic process termed anoikis. However, mechanisms involved in regulation of cell survival are poorly understood and mediators responsible for anoikis have not been well characterized. Here, we demonstrate that reactive oxygen species (ROS) produced through the involvement of the small GTPase Rac-1 upon integrin engagement exert a mandatory role in transducing a pro-survival signal that ensures that cells escape from anoikis. In particular, we show that ROS are responsible for the redox-mediated activation of Src that trans-phosphorylates epidermal growth factor receptor (EGFR) in a ligand-independent manner. The redox-dependent phosphorylation of EGFR activates both extracellular signal-regulated protein kinase and Akt downstream signalling pathways, culminating in degradation of the pro-apoptotic protein Bim. Hence, our results shed new light on the mechanism granting the adhesion-dependent antiapoptotic effect, highlighting a fundamental role of ROS-mediated Src regulation in ensuring anoikis protection.
Recent studies sight b-adrenergic receptor (AR) antagonists as novel therapeutic agents for melanoma, as they may reduce disease progression. Here within, we evaluated the expression of b-ARs in a series of human cutaneous melanocytic lesions, and studied the effect of their endogenous agonists, norepinephrine (NE) and epinephrine (E), on primary and metastatic human melanoma cell lines. Using immunohistochemistry, we found that both b1-and b2-ARs are expressed in tissues from benign melanocytic naevi, atypical naevi and malignant melanomas and that expression was significantly higher in malignant tumours. Melanoma cell lines (human A375 primary melanoma cell line and human Hs29-4T metastatic melanoma cell lines) also expressed b1-and b2-ARs by measuring transcripts and proteins. NE or E increased metalloprotease-dependent motility, released interleukin-6 and 8 (IL-6, IL-8) and vascular endothelial growth factor (VEGF). These effects of catecholamines were inhibited by the unselective b-AR antagonist propranolol. The role of soluble factors elicited by catecholamines seemed pleiotropic as VEGF synergized with NE increased melanoma invasiveness through 3D barriers, while IL-6 participated in stromal fibroblast activation towards a myofibroblastic phenotype. Our results indicate that NE and E produce in vitro via b-ARs activation a number of biological responses that may exert a pro-tumorigenic effect in melanoma cell lines. The observation that b-ARs are upregulated in malignant melanoma tissues support the hypothesis that circulating catecholamines NE and E, by activating their receptors, favour melanoma progression in vivo. Melanoma represents the most aggressive type of skin cancer, with an increasing incidence found especially in young adults. A significant reduction in mortality has been not observed, despite a noteworthy improvement in early diagnosis achieved in recent years. 1 At present, no medical option can cure metastatic melanoma (MM) and the only effective treatment for the eradication of the disease is early-phase surgery. 2 Hence, increased knowledge of the biological pathways underlying the process of melanoma dissemination and metastasis is crucial in order to identify new therapeutic targets.Previous studies have shown that various human solid tumours, such as breast, colon, prostatic, ovary, nasopharyngeal and oral cancer, express b2-adrenoceptor (b2-AR), raising the possibility that such receptors may affect invasion and dissemination processes. [3][4][5][6][7][8] Moreover, some stress neurotransmitters, such as norepinephrine (NE) and epinephrine (E), have been demonstrated to contribute to the regulation of tumour cell invasion, at least in part through b-AR activation. 6,7,9 Interactions between tumour cells and soluble factors originated from the nervous system has recently been proposed to favour metastasis formation. 10 Improved survival rates have been demonstrated in mice with metastatic tumour by combined administration of b-AR antagonists. 11 In addition, recent evidence suggests a ...
Eph tyrosine kinases instruct cell for a repulsive behavior, regulating cell shape, adhesion, and motility. Beside its role during embryogenesis, neurogenesis, and angiogenesis, EphA2 kinase is frequently up-regulated in tumor cells of different histotypes, including prostate, breast, colon, and lung carcinoma, as well as melanoma. Although a function in both tumor onset and metastasis has been proposed, the role played by EphA2 is still debated. Here, we showed that EphA2 reexpression in B16 murine melanoma cells, which use a defined mesenchymal invasion strategy, converts their migration style from mesenchymal to amoeboid-like, conferring a plasticity in tumor cell invasiveness. Indeed, in response to reexpression and activation of EphA2, melanoma cells activate a nonproteolytic invasive program that proceeds through the activation of cytoskeleton motility, the retraction of cell protrusions, a Rho-mediated rounding of the cell body, and squeezing among three-dimensional matrix, giving rise to successful lung and peritoneal lymph node metastases. Our results suggest that, among the redundant mechanisms operating in tumor cells to penetrate the anatomic barriers of host tissues, EphA2 plays a pivotal role in the adaptive switch in migration pattern and mechanism, defining and distinguishing tumor cell invasion strategies. Thus, targeting EphA2 might represent a future approach for the therapy of cancer dissemination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.