This work demonstrates a fast, sensitive method of characterizing the dynamic performance of MR gradient systems. The accuracy of gradient time-courses is often compromised by field imperfections of various causes, including eddy currents and mechanical oscillations. Characterizing these perturbations is instrumental for corrections by pre-emphasis or post hoc signal processing. Herein, a gradient chain is treated as a linear time-invariant system, whose impulse response function is determined by measuring field responses to known gradient inputs. Triangular inputs are used to probe the system and response measurements are performed with a dynamic field camera consisting of NMR probes. In experiments on a whole-body MR system, it is shown that the proposed method yields impulse response functions of high temporal and spectral resolution. Besides basic properties such as bandwidth and delay, it also captures subtle features such as mechanically induced field oscillations. For validation, measured response functions were used to predict gradient field evolutions, which was achieved with an error below 0.2%. The field camera used records responses of various spatial orders simultaneously, rendering the method suitable also for studying cross-responses and dynamic shim systems. It thus holds promise for a range of applications, including pre-emphasis optimization, quality assurance, and image reconstruction.
Despite continuous hardware advances, MRI is frequently subject to field perturbations that are of higher than first order in space and thus violate the traditional k-space picture of spatial encoding. Sources of higher order perturbations include eddy currents, concomitant fields, thermal drifts, and imperfections of higher order shim systems. In conventional MRI with Fourier reconstruction, they give rise to geometric distortions, blurring, artifacts, and error in quantitative data. This work describes an alternative approach in which the entire field evolution, including higher order effects, is accounted for by viewing image reconstruction as a generic inverse problem. The relevant field evolutions are measured with a third-order NMR field camera. Algebraic reconstruction is then formulated such as to jointly minimize artifacts and noise in the resulting image. It is solved by an iterative conjugate-gradient algorithm that uses explicit matrix-vector multiplication to accommodate arbitrary net encoding. The feasibility and benefits of this approach are demonstrated by examples of diffusion imaging. In a phantom study, it is shown that higher order reconstruction largely overcomes variable image distortions that diffusion gradients induce in EPI data. In vivo experiments then demonstrate that the resulting geometric consistency permits straightforward tensor analysis without coregistration. Magn Reson Med 65:1690-1701, 2011.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.