We derive the statistics of the efficiency under the assumption that thermodynamic fluxes fluctuate with normal law, parametrizing it in terms of time, macroscopic efficiency, and a coupling parameter ζ. It has a peculiar behavior: no moments, one sub-, and one super-Carnot maxima corresponding to reverse operating regimes (engine or pump), the most probable efficiency decreasing in time. The limit ζ → 0 where the Carnot bound can be saturated gives rise to two extreme situations, one where the machine works at its macroscopic efficiency, with Carnot limit corresponding to no entropy production, and one where for a transient time scaling like 1=ζ microscopic fluctuations are enhanced in such a way that the most probable efficiency approaches the Carnot limit at finite entropy production.
In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. . We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.
We connect two recent advances in the stochastic analysis of nonequilibrium systems: the (loose) uncertainty principle for the currents, which states that statistical errors are bounded by thermodynamic dissipation, and the analysis of thermodynamic consistency of the currents in the light of symmetries. Employing the large deviation techniques presented by Gingrich et al. [Phys. Rev. Lett. 116, 120601 (2016)] and Pietzonka, Barato, and Seifert [Phys. Rev. E 93, 052145 (2016)], we provide a short proof of the loose uncertainty principle, and prove a tighter uncertainty relation for a class of thermodynamically consistent currents J . Our bound involves a measure of partial entropy production, that we interpret as the least amount of entropy that a system sustaining current J can possibly produce, at a given steady state. We provide a complete mathematical discussion of quadratic bounds which allows one to determine which are optimal, and finally we argue that the relationship for the Fano factor of the entropy production rate var σ/mean σ 2 is the most significant realization of the loose bound. We base our analysis both on the formalism of diffusions, and of Markov jump processes in the light of Schnakenberg's cycle analysis.
The widely debated feasibility of thermodynamic machines achieving Carnot efficiency at finite power has been convincingly dismissed. Yet, the common wisdom that efficiency can only be optimal in the limit of infinitely-slow processes overlooks the dual scenario of infinitely-fast processes. We corroborate that efficient engines at divergent power output are not theoretically impossible, framing our claims within the theory of Stochastic Thermodynamics. We inspect the case of an electronic quantum dot coupled to three particle reservoirs to illustrate the physical rationale.
Thermodynamics is usually formulated on the presumption that the observer has complete information about the system he or she deals with: no parasitic current, exact evaluation of the forces that drive the system. For example, the acclaimed fluctuation relation (FR), relating the probability of time-forward and time-reversed trajectories, assumes that the measurable transitions suffice to characterize the process as Markovian (in our case, a continuous-time jump process). However, most often the observer only measures a marginal current. We show that he or she will nonetheless produce an effective description that does not dispense with the fundamentals of thermodynamics, including the FR and the 2nd law. Our results stand on the mathematical construction of a hidden time reversal of the dynamics, and on the physical requirement that the observed current only accounts for a single transition in the configuration space of the system. We employ a simple abstract example to illustrate our results and to discuss the feasibility of generalizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.