Distributed Denial of Service (DDoS) attacks disrupt global network services by mainly overwhelming the host victim with requests originating from multiple traffic sources. DDoS attacks are currently on the rise due to the ease of execution and rental of distributed architectures, which could potentially result in substantial revenue losses. Therefore, the detection and prevention of DDoS attacks are currently topics of high interest. In this study, we utilize traffic flow information to determine if a specific flow is associated with a DDoS attack. We evaluate traditional Machine Learning (ML) methods in developing our DDoS detector and utilize an exhaustive hyperparameter search to optimize the detection capability of each ML model. Our evaluation shows that most algorithms provide satisfactory results, with Random Forests achieving as high as 99% of detection accuracy, which is comparable to existing deep learning approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.