This work presents the first results obtained by applying in situ and remote-sensing methodologies to monitor the Ponte della Musica-Armando Trovajoli located in Rome, within the activities of the WP6 “Structural Health Monitoring and Satellite Data” 2019-21 Reluis Project. In particular, the use of remote-sensing Differential Synthetic Aperture Radar (SAR) Interferometry (DInSAR) measurements provided a spatial map of the displacement of the investigated infrastructure and the corresponding time-series, with the aim of monitoring deformation phenomena, focusing on the local scale analysis, which produces suitable results for urban monitoring and damage assessment. The DInSAR results have been integrated with the identification of the dynamic characteristics of the bridge, performed through an experimental campaign of ambient vibration measurements carried out in October 2020 and with the local-scale definition of the engineering geological setting of the foundation soil. The subsoil of the bridge is constituted by more than 50 m of recent alluvial deposits resting on Pliocene stiff clay acting as a geological bedrock. A substantially stable behavior of the bridge structural elements has been observed based on the analysis of both satellite and velocimetric data. This case represents a good example about how the integration of in situ sensors with remotely sensed data and the exploitation of a detailed knowledge regarding the on-site conditions represent a key factor for a sustainable structural and infrastructural monitoring and can support the planning both of maintenance and safety management.
Structural health monitoring is a crucial issue in areas with different hazard sources, such as Italy. Among non-invasive monitoring techniques, remote sensing provides useful information in supporting the management process and safety evaluations, reducing the impact of disturbances on the functionality of construction systems. The ground displacement time-series based on the analysis of Differential Interferometric Synthetic Aperture Radar (DInSAR) measurements, as well as the information about the geology of the area and the geometry of the construction under monitoring, provides useful data for the built environment’s structural assessment. This paper focuses on the structural monitoring and damage assessment of constructions based on the GIS integration of DInSAR measurements, geological investigation, historical surveys and 3D modeling. The methodology is applied to the residential area of Valco San Paolo in the city of Rome (Italy). Once the geological interpretation has confirmed the results of the DInSAR measurements, a quick damage assessment that considers all the possible conditions of the pre-existing damage at the time zero of the monitoring is shown for a damaged manufact in the area. The presented results highlight how the strategy to correlate the DInSAR-monitored ground settlements with the damage scales allows potentially to monitor continuous construction systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.