[1] Two parallel experiments involving the evolution and runup of plunging solitary waves on a sloping bed were conducted: (1) a rigid-bed experiment, allowing direct (hot film) measurements of bed shear stresses and (2) a sediment-bed experiment, allowing for the measurement of pore water pressures and for observation of the morphological changes. The two experimental conditions were kept as similar as possible. The experiments showed that the complete sequence of the plunging solitary wave involves the following processes: shoaling and wave breaking; runup; rundown and hydraulic jump; and trailing wave. The bed shear stress measurements showed that the mean bed shear stress increases tremendously (with respect to that in the approaching wave boundary layer), by as much as a factor of 8, in the runup and rundown stages, and that the RMS value of the fluctuating component of the bed shear stress is also affected, by as much as a factor of 2, in the runup and hydraulic jump stages. The pore water pressure measurements showed that the sediment at (or near) the surface of the bed experiences upward directed pressure gradient forces during the down-rush phase. The magnitude of this force can reach values as much as approximately 30% of the submerged weight of the sediment. The experiments further showed that the sediment transport occurs in the sheet flow regime for a substantial portion of the beach covering the area where the entire sequence of the wave breaking takes place. The bed morphology is explained qualitatively in terms of the measured bed shear stress and the pressure gradient forces.
We report on the preparation of luminescent collectors based on epoxy resins containing Coumarin 6 as fluorescent dye. Fluorescent epoxy slabs were obtained by carefully mixing from 60 to 150 ppm of the fluorophore with bisphenol A diglycidyl ether and 4,4′-methylenebis(2-methylcyclohexylamine) as curing agent. Spectroscopic (FT-IR, solid-state NMR, Raman) investigations and calorimetric analysis evidence the success of the preparation procedure in terms of slab homogeneity, fluorophore dispersibility and its role in promoting the crosslinking extent. The concentrating ability and the derived optical efficiencies of the epoxy-based collectors are determined with a properly designed set-up and result greater (∼10%) than that of poly(methyl methacrylate) concentrators with the same fluorophore and geometry. Optical efficiencies as high as 7.4% are obtained and enable the potential use of epoxy resins as bulk thermosetting materials for solar collectors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.