[1] We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5°× 0.5°spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 ± 7 J × 10 18 yr −1 ), H (164 ± 15 J × 10 18 yr −1), and GPP (119 ± 6 Pg C yr ) were similar to independent estimates. Our global TER estimate (96 ± 6 Pg C yr −1 ) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.
Recent European heatwaves have raised interest in the impact of land cover conditions on temperature extremes. At present, it is believed that such extremes are enhanced by stronger surface heating of the atmosphere, when soil moisture content is below average. However, the impact of land cover on the exchange of water and energy and the interaction of this exchange with the soil water balance during heatwaves is largely unknown. Here we analyse observations from an extensive network of flux towers in Europe that reveal a difference between the temporal responses of forest and grassland ecosystems during heatwaves. We find that initially, surface heating is twice as high over forest than over grassland. Over grass, heating is suppressed by increased evaporation in response to increased solar radiation and temperature. Ultimately, however, this process accelerates soil moisture depletion and induces a critical shift in the regional climate system that leads to increased heating. We propose that this mechanism may explain the extreme temperatures in August 2003. We conclude that the conservative water use of forest contributes to increased temperatures in the short term, but mitigates the impact of the most extreme heat and/or long-lasting events
The energy balance at most surface-atmosphere flux research sites remains unclosed. The mechanisms underlying the discrepancy between measured energy inputs and outputs across the global FLUXNET tower network are still under debate. Recent reviews have identified exchange processes and turbulent motions at large spatial and temporal scales in heterogeneous landscapes as the primary cause of the lack of energy balance closure at some intensively-researched sites, while unmeasured storage terms cannot be ruled out as a dominant contributor to the lack of energy balance closure at many other sites. We analyzed energy balance closure across 173 ecosystems in the FLUXNET database and explored the relationship between energy balance closure and landscape heterogeneity using MODIS products and GLOBEstat elevation data. Energy balance closure per research site (CEB,s) averaged 0.84 ± 0.20, with best average closures in evergreen broadleaf forests and savannas (0.91–0.94) and worst average closures in crops, deciduous broadleaf forests, mixed forests and wetlands (0.70–0.78). Half-hourly or hourly energy balance closure on a percent basis increased with friction velocity (u*) and was highest on average under near-neutral atmospheric conditions. CEB,s was significantly related to mean precipitation, gross primary productivity and landscape-level enhanced vegetation index (EVI) from MODIS, and the variability in elevation, MODIS plant functional type, and MODIS EVI. A linear model including landscape-level variability in both EVI and elevation, mean precipitation, and an interaction term between EVI variability and precipitation had the lowest Akaike’s information criterion value. CEB,s in landscapes with uniform plant functional type approached 0.9 and CEB,s in landscapes with uniform EVI approached 1. These results suggest that landscape-level heterogeneity in vegetation and topography cannot be ignored as a contributor to incomplete energy balance closure at the flux network level, although net radiation measurements, biological energy assimilation, unmeasured storage terms, and the importance of good practice including site selection when making flux measurements should not be discounted. Our results suggest that future research should focus on the quantitative mechanistic relationships between energy balance closure and landscape-scale heterogeneity, and the consequences of mesoscale circulations for surface-atmosphere exchange measurements
Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO 2 and CH 4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH 4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO 2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH 4 emissions for the benefit of net carbon sequestration. With a sustained pulseresponse radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH 4 emissions and cumulative CO 2 exchange.wetland conversion | methane | radiative forcing | carbon dioxide F or their ability to simultaneously sequester CO 2 and emit CH 4 , wetlands are unique ecosystems that may potentially generate large negative climate feedbacks over centuries to millennia (1) and positive feedbacks over years to several centuries (2). Wetlands are among the major biogenic sources of CH 4 , contributing to about 30% of the global CH 4 total emissions (3), and are presumed to be a primary driver of interannual variations in the atmospheric CH 4 growth rate (4, 5). Meanwhile, peatlands, the main subclass of wetland ecosystems, cover 3% of the Earth's surface and are known to store large quantities of carbon
Although northern peatlands cover only 3% of the land surface, their thick peat deposits contain an estimated onethird of the world's soil organic carbon (SOC). Under a changing climate the potential of peatlands to continue sequestering carbon is unknown. This paper presents an analysis of 6 years of total carbon balance of an almost intact Atlantic blanket bog in Glencar, County Kerry, Ireland. The three components of the measured carbon balance were: the land-atmosphere fluxes of carbon dioxide (CO 2 ) and methane (CH 4 ) and the flux of dissolved organic carbon (DOC) exported in a stream draining the peatland. The 6 years C balance was computed from 6 years (2003-2008) of measurements of meteorological and eddy-covariance CO 2 fluxes, periodic chamber measurements of CH 4 fluxes over 3.5 years, and 2 years of continuous DOC flux measurements. Over the 6 years, the mean annual carbon was À29.7 AE 30.6 (AE 1 SD) g C m À2 yr À1 with its components as follows: carbon in CO 2 was a sink of À47.8 AE 30.0 g C m À2 yr À1 ; carbon in CH 4 was a source of 4.1 AE 0.5 g C m À2 yr À1 and the carbon exported as stream DOC was a source of 14.0 AE 1.6 g C m À2 yr À1 . For 2 out of the 6 years, the site was a source of carbon with the sum of CH 4 and DOC flux exceeding the carbon sequestered as CO 2 . The average C balance for the 6 years corresponds to an average annual growth rate of the peatland surface of 1.3 mm yr À1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.