In this work a low-temperature plasma source for the generation of plasma activated water (PAW) is developed and characterized. The plasma reactor was operated by means of an atmospheric-pressure air dielectric barrier discharge (DBD). The plasma generated is in contact with the water surface and is able to chemically activate the liquid medium. Electrodes were supplied by both sinusoidal and nanosecond-pulsed voltage waveforms. Treatment times were varied from 2 to 12 min to increase the energy dose released to the water by the DBD plasma. The physics of the discharge was studied by means of electrical, spectroscopic and imaging diagnostics. The interaction between the plasma and the liquid was investigated as well. Temperature and composition of the treated water were detected. Images of the discharges showed a filamentary behaviour in the sinusoidal case and a more homogeneous behaviour in the nanosecond-pulsed one. The images and the electrical measurements allowed to evaluate an average electron number density of about 4 × 10 19 and 6 × 10 17 m −3 for the sinusoidal and nanosecond-pulsed discharges respectively. Electron temperatures in the range of 2.1÷2.6 eV were measured by using spectroscopic diagnostics. Rotational temperatures in the range of 318-475 K were estimated by fitting synthetic spectra with the measured ones. Water temperature and pH level did not change significantly after the exposure to the DBD plasma. The production of ozone and hydrogen peroxide within the water was enhanced by increasing the plasma treatment time and the energy dose. Numerical simulations of the nanosecond-pulsed discharge were performed by using a self-consistent coupling of stateto-state kinetics of the air mixture with the Boltzmann equation of free electron kinetics. Temporal evolution of the electron energy distribution function shows departure from the Maxwellian distribution especially during the afterglow phase of the discharge. When limited deviations from Maxwellian distribution were observed, calculated electron temperature is in good agreement with the one measured by means of spectroscopic diagnostics. Computed temporal evolution of the energy delivered to the discharge is comparable with the one obtained from electrical measurements. The electrical discharges supplied by both voltage waveforms produce plasma activated water with negligible thermal effects and pH variations.
The Electro-Hydro-Dynamic (EHD) interaction induced in atmospheric-pressure air by a surface Dielectric Barrier Discharge (DBD) actuator has been experimentally investigated. Plasma Synthetic Jets Actuators (PSJAs) are DBD actuators able to induce an air stream, perpendicular to the actuator surface. These devices can be used in the aerodynamics field to prevent or induce flow separation, modify the laminar to turbulent transition inside the boundary layer, and stabilize or mix air flows. They can also be used to enhance indirect plasma treatment effects, increasing the reactive species delivery rate onto surfaces and liquids. This can play a major role in plasma processing and chemical kinetics modelling, where only diffusive mechanisms are often considered. This paper reports on the importance that different electrode geometries can have on the performance of different PSJAs. A series of DBD aerodynamic actuators designed to produce perpendicular jets have been fabricated on 2-layer printed circuit boards (PCBs). Linear and annular geometries have been considered, testing different upper electrode distances in the linear case and different diameters in the annular one. AC voltage supplied at 11.5 kV peak and 5 kHz frequency has been used. Lower electrodes were connected to ground and buried in epoxy resin to avoid undesired plasma generation on the lower actuator surface.Voltage and current measurements have been carried out to evaluate the active power delivered to the discharges. Schlieren imaging allowed to visualize the induced jets and gave an estimate of their evolution and geometry. Pitot tube measurements were performed to obtain the PSJAs' velocity profiles and to estimate the mechanical power delivered to the fluid.Optimal values of the inter-electrode distance and diameter have been found in order to maximize jet velocity, mechanical power or efficiency. Annular geometries are found to achieve the best performances.
Atmospheric-pressure surface dielectric barrier discharges (S-DBDs) have been widely investigated in the past two decades for airflow manipulation due to their mechanical simplicity, electrical control capability and low power consumption [1]. In these devices, momentum transfer from charged to neutral particles results in an electrohydrodynamic (EHD) body force, a phenomenon also known as ionic wind. In its simplest implementation, the ionic wind imparts momentum to the background gas in the direction parallel to the dielectric surface [1,2]. Electrical and geometrical variations, however, can also produce fluxes in other directions [3,4].In addition to flow control applications, S-DBDs have gained renewed interest in recent years for their potential use in emerging biomedical, environmental and agricultural applications, such as hand cleaning [5], preparation of plasmaactivated water [6], ozone generation [7], seed treatment [8] and food preservation [9]. The plasma treatment in these systems is typically indirect and transport from the surface discharge to the sample being treated is normally assumed to be dominated by diffusion [6,10].Although all S-DBDs have the same underlying topology, namely two electrodes separated by a dielectric barrier, a number of different electrode designs, such as square [8], hexagonal [6], circular [11] and spiral [12] have been proposed in recent years. To date, however, limited attention has been paid to the influence of the electrode geometry on the efficacy of these S-DBDs, and here we report experimental results that demonstrate that the electrode pattern of the S-DBD can be
The emerging field of atmospheric pressure plasmas (APPs) for treatment of various solutions and suspensions has led to a variety of plasma reactors and power sources. This article reports on the design, characterisation and modelling of a novel plasma-microbubble reactor that forms a dielectric barrier discharge (DBD) at the gas-liquid interface to facilitate the transfer of short-lived highly reactive species from the gas plasma into the liquid phase. The use of microbubbles enabled efficient dispersion of long-lived reactive species in the liquid and UVC-induced oxidation reactions are triggered by the plasma radiation at the gas-liquid interface. A numerical model was developed to understand the dynamics of the reactor, and the model was validated using experimental measurements. Fluid velocities in the riser region of the reactor were found to be an order of magnitude higher for smaller bubbles (~500 µm diameter) than for larger bubbles (~2500 µm diameter); hence provided well-mixed conditions for treatment. In addition to other reactive oxygen species (ROS) and reactive nitrogen species (RNS), ���� Interfacial area m-1 Dynamic liquid velocity Pa s Volume m 3 Molecular weight g mol-1 1.0 Introduction Ozone has been established as an excellent oxidising agent and used on industrial scale for water treatment worldwide (Loeb et al., 2012). Its high oxidation potential of 2.07 V is superior to that of chlorine (1.36 V), and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.