Predictable and time-programmable sequences of the kind pH1(high)–pH2(low)–pH3(high) in water solution are obtained by a judicious choice of the concentration of nitroacetic acid undergoing decarboxylation.
This work reports that the composition of a dynamic library (DL) of interconverting imines can be controlled over time in a dissipative fashion by the addition of an activated carboxylic acid used as a chemical fuel. When the fuel is added to the DL, which is initially under thermodynamic equilibrium, the composition of the mixture dramatically changes and a new, dissipative (out of equilibrium) state is reached that persists until fuel exhaustion. Thus, a transient dissipative dynamic library (DDL) is generated that, eventually, reverts back to the initial DL when the fuel is consumed, closing a DL→DDL→DL cycle. The larger the amount of added fuel, the longer the time spent by the system in the DDL state. The transimination reaction is shown to be an optimal candidate for the realization of a dissipative dynamic covalent chemistry (DDCvC).
This Concept is focused on the key features of dissipative dynamic combinatorial chemistry (DDCC). DDCC deals with transient libraries of compounds, maintained out‐of‐equilibrium by the consumption of a fuel, whose composition changes upon the selection pressure of kinetic and/or thermodynamic processes. Concepts and definitions of kinetic and thermodynamic dissipative dynamic libraries (“KDDL” and “TDDL”), are introduced and illustrated by a number of actual cases, thus showing the consistency of the present approach. Such concepts and definitions can help establish a common language for this emerging field, which, in our view, has the potential to become highly relevant to supramolecular chemistry.
Temporal control of molecular motions is receiving increasing attention because it is central to the development of molecular switches and motors and nanoscopic materials with life-like properties. Inspired by previous studies, here, we report that acid 12 can be used to temporally control the conformational freedom around the C−C bond connecting the two aromatic rings of the ditopic bases 4 and 5. Consistent with NMR measurements and DFT calculations, before fuel addition, the conformational motion of the two aromatic rings of both 4 and 5 mainly consists of a large amplitude torsional oscillation spanning about 260°and passing for the anti conformation (the two nitrogen atoms at opposite sides). Immediately after the addition of 12, due to the protonation of one nitrogen and consequent formation of an N−H•••N intramolecular hydrogen bond, the torsional oscillation in both 4H + and 5H + is not only restricted to a smaller range (about 100°) but explores the previously forbidden conformational space around the syn conformation (the two nitrogen atoms at the same side). However, the new state is an out-of-equilibrium state since decarboxylation of the conjugate base of 12 takes place and, at the end of the process, the system reverts to the more conformationally mobile state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.