The intention of the current article is to review the epidemiology with related socioeconomic costs, pathophysiology, and treatment options for diaphyseal long bone delayed unions and nonunions. Diaphyseal nonunions in the tibia and in the femur are estimated to occur 4.6-8% after modern intramedullary nailing of closed fractures with an even much higher risk in open fractures. There is a high socioeconomic burden for long bone nonunions mainly driven by indirect costs, such as productivity losses due to long treatment duration. The classic classification of Weber and Cech of the 1970s is based on the underlying biological aspect of the nonunion differentiating between "vital" (hypertrophic) and "avital" (hypo-/atrophic) nonunions, and can still be considered to represent the basis for basic evaluation of nonunions. The "diamond concept" units biomechanical and biological aspects and provides the pre-requisites for successful bone healing in nonunions. For humeral diaphyseal shaft nonunions, excellent results for augmentation plating were reported. In atrophic humeral shaft nonunions, compression plating with stimulation of bone healing by bone grafting or BMPs seem to be the best option. For femoral and tibial diaphyseal shaft fractures, dynamization of the nail is an atraumatic, effective, and cheap surgical possibility to achieve bony consolidation, particularly in delayed nonunions before 24 weeks after initial surgery. In established hypertrophic nonunions in the tibia and femur, biomechanical stability should be addressed by augmentation plating or exchange nailing. Hypotrophic or atrophic nonunions require additional biological stimulation of bone healing for augmentation plating.
The development and characterization of biomaterials for bone replacement in case of large defects in preconditioned bone (e.g., osteoporosis) require close cooperation of various disciplines. Of particular interest are effects observed in vitro at the cellular level and their in vivo representation in animal experiments. In the present case, the material-based alteration of the ratio of osteoblasts to osteoclasts in vitro in the context of their co-cultivation was examined and showed equivalence to the material-based stimulation of bone regeneration in a bone defect of osteoporotic rats. Gelatin-modified calcium/strontium phosphates with a Ca:Sr ratio in their precipitation solutions of 5:5 and 3:7 caused a pro-osteogenic reaction on both levels in vitro and in vivo. Stimulation of osteoblasts and inhibition of osteoclast activity were proven during culture on materials with higher strontium content. The same material caused a decrease in osteoclast activity in vitro. In vivo, a positive effect of the material with increased strontium content was observed by immunohistochemistry, e.g., by significantly increased bone volume to tissue volume ratio, increased bone morphogenetic protein-2 (BMP2) expression, and significantly reduced receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) ratio. In addition, material degradation and bone regeneration were examined after 6 weeks using stage scans with ToF-SIMS and µ-CT imaging. The remaining material in the defects and strontium signals, which originate from areas exceeding the defect area, indicate the incorporation of strontium ions into the surrounding mineralized tissue. Thus, the material inherent properties (release of biologically active ions, solubility and degradability, mechanical strength) directly influenced the cellular reaction in vitro and also bone regeneration in vivo. Based on this, in the future, materials might be synthesized and specifically adapted to patient-specific needs and their bone status.
Despite the high incidence of metaphyseal bone fractures in patients, the mechanisms underlying the healing processes are poorly understood due to the lack of suitable experimental animal models. Hence, the present study was conducted to establish and characterise a clinically relevant large-animal model for metaphyseal bone healing.Six female adult Merino sheep underwent full wedge-shaped osteotomy at the distal left femur metaphysis. The osteotomy was stabilised internally with a customised anatomical locking titanium plate that allowed immediate post-operative full-weight bearing. Bone healing was evaluated at 12 weeks post-fracture relative to the untouched right femur.Histological and quantitative micro-computed tomography results revealed an increased mineralised bone mass with a rich bone microarchitecture. New trabeculae healed by direct intramembranous ossification, without callus and cartilaginous tissue formation. Stiffness at the cortical and trabecular regions was comparable in both groups. Functional morphological analysis of the osteocyte lacunae revealed regularly arranged spherically shaped lacunae along with the canalicular network. Bone surface biochemical analysis using time-of-flight secondary-ion mass spectrometry showed high and homogeneously distributed levels of calcium and collagenous components. Ultrastructure imaging of the new trabeculae revealed a characteristic parallel arrangement of the collagen fibrils, evenly mineralised by the dense mineral substance. The specialised bone cells were also characterised by their unique structural features. Bone remodelling in the fractured femur was evident in the higher expression levels of prominent bone formation and resorption genes. In conclusion, the novel metaphyseal fracture model is beneficial for studying healing and treatment options for the enhancement of metaphyseal bone defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.